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Earthquake Monitoring Across Scales
(meters)

Global	(107)	

Local	(104-5)	

Reservoir	(103-4)	

Regional	(105-6)	

Lab	(<	100)	

Decreasing	Array	Aperture	

Increasing	Sensor	Density	

Increasing	Frequency	
Common	Goal:		

	-	detect	
	-	locate	
	-	characterize		

earthquakes	as	completely		
and	as	accurately	as	possible.	

Mines	(101-3)	



Long	DuraOon	(Large-T)	
Years	of	con+nuous	waveforms	

Big	Networks	(Large-N)	
1000s	of	sensors	

We	need	scalable	algorithms	to	extract	useful	
informaOon	from	these	massive	data	volumes	

Seismology	has	lots	of	data…	



Standard Approach to Detection/Location

(1)	DetecOon	(STA/LTA)	
(2)	AssociaOon	
(3)	LocaOon	
(4)	CharacterizaOon	

Earle	and	Shearer	[1994]	



Standard approach works well when… 

Events	are	recorded	at	>	3	staOons		
Events	are	impulsive	
Events	don’t	overlap	



…weak	events	with	emergent	arrivals	(like	LFEs)	

Standard approach works less well for … 

Katsumata	and	Kamaya	[2003]	



…small	events	with	too	few	arrivals	to	locate	

Standard approach works less well for … 



…Overlapping	Events	during	intense	acOvity	

Standard approach works less well for … 
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STA/LTA

General Applicability

HIGH	

LOW	
InsensiOve	to	weak	and/or	non-
impulsive	signals,	need	mulOple	staOons	

HIGH	



Slip occurring at different 
times in the same place, 
generates identical 
seismograms. 

 

We can look for a repeating 
signal from a repeating 
source, but most sources 
don’t exactly repeat. 

38 Repeats of Earthquake on the Calaveras Fault



Adjacent Earthquakes on the Calaveras Fault
Earth	structure	is	essenOally	
constant	
	
Adjacent	earthquakes	have	
similar	waveforms.	
	
Can	detect	earthquakes		
by	searching	for	similar	
waveforms	
	
	



Shelly	et	al.	[2007]	

Template Matching



Template-based detection is powerful (few Type II errors)

LFEs	planted	in	
real	data	at	snr	
of	0.1	
	
	
34/36	are	
detected	

Shelly	et	al.	[2007]	
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LOW	
Need	template	waveform	a	priori		

HIGH	

HIGH	

Informed Similarity Search



Exhaustive Search for Similar Waveforms
“Autocorrela+on”		-		Uninformed	search	for	similar	signal	–	detect	
events	by	cross	correla+ng	all	window	pairs.	

Brown	et	al.	[2008]	



Autocorrelation for LFE Detection

Aguiar	et	al.	[2017]	



Aguiar	et	al.	[2017]	
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New approach: 
FAST
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Shazam	–	idenOfy	songs	
from	a	sample	of	recording.		

Soundhound	–	idenOfy	songs	
from	singing	(seriously).		

TinEye	–	Search	the	web	for	
the	source	of	a	known	image.	

YouTube	–	detect	
copyright	infringement	

CopyLeaks	–	detect	
plagiarism	

Altavista	–	remove	duplicate	
web	pages	from	search	results	

Some Big Data 
Technologies for 
Similarity Search



FAST (Fingerprinting And Similarity Thresholding)

Data	

Preprocessing	

Feature	Extrac+on	

Database	
Genera+on	&	Search	

Post-processing	

Detec+on	Results	 A	
B	

1.  Data	Representa+on	
	
	

2.  Fast	approximate	similarity	search	



Fingerprinting

•  “Fingerprint” waveform with sparse, diagnostic description
•  Store fingerprints in database and search it efficiently

Waveform	
Data	Compression	

Binary	Fingerprint	

Data	Compression	

Clara	Yoon	 Fingerprint	



Step 1: Time Series to Spectrogram



Step 2: Spectrogram to Spectral Images
To	find	short	dura+on	events,	divide	spectrogram	into	
overlapping	spectral	images	
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Step 3: Spectral Image to its Wavelet Transform

Goal:	compress	nonsta+onary	seismic	signal	
–  Compute	2D	discrete	wavelet	transform	(Haar	basis)	of	spectral	
image	to	get	wavelet	coefficients	
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Step 4: Wavelet Transform to Top Coefficients

Key	discrimina+ve	features	are	concentrated	in	a	few	wavelet	
coefficients	with	highest	devia+on	

–  Keep	only	sign	(+	or	-)	of	these	coefficients,	set	rest	to	0	

Data	compression,	robust	to	noise	
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Step 5: Top Coefficients into a  Binary Fingerprint

Fingerprint	must	be	compact	and	sparse	to	store	in	database	
Convert	top	coefficients	to	a	binary	sequence	of	0’s,	1’s	

•  Nega+ve:	01,	Zero:	00,	Posi+ve:	10	
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Jaccard Similarity
How	similar	are	2	binary	fingerprints?	

	
	
Jaccard	similarity:	“resemblance”	

J A,B( ) =
A∩B
A∪B

A	 B	

J A,B( ) =
A∩B
A∪B

A	 B	
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Fingerprints Should be Discriminative
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Names are a compact “Fingerprint”

Names are compact, but not discriminative.



How to select “discriminative” coefficients?

Red represents intersection of fingerprints for samples 1 and 2. 

0.266 0.117 0.040



True Detections vs. False Positives

Don’t choose largest 
coefficients, choose those on the 
tails of a distribution. 

Suppresses false detections of 
persistent noise, but maintains 
high accuracy for relatively rare 
earthquake signals.

Trade-off	Curves	



FAST Workflow

Locality Sensitive Hashing groups similar 
fingerprints drawn from a high-dimensional 
space with high probability

Waveform	search	query	 Database	

s	
Match!	

Yoon	et	al.	(2015)	

Min-Hash  uses  multiple  random 
hash  functions  to  map  a  binary 
fingerprint to a single integer. 

The  probability  of  two  finger- 
prints  A and  B  mapping  to  the 
same  integer  is  equal  to  their 
Jaccard similarity.

Min-Hash reduces dimensionality 
while  preserving  the  similarity 
between A and B in a probabilistic 
manner.



Why is FAST Fast for Large T?

Ignores	>	1011	pairs	

Detects	<	103	pairs	

Outputs	<	105	pairs	

A

B

                    1 week     2 weeks    1 month       3 months   6 months

3 days      1 week     2 weeks     1 month       3 months   6 months1 day

1 day

1 week

1 hour

1 year

20 years

Yoon	et	al.	(2015)	



Why is FAST Fast for Large T?

Ignores	>	1011	pairs	

Detects	<	103	pairs	

Outputs	<	105	pairs	

Yoon	et	al.	(2015)	



80	km	

Guy-Greenbrier Sequence in Arkansas 



Hydraulic	S+mula+on	(Fracking)	
wells	use	a	staged	injec+on	of	

fluid	to	increase	permeability	and	
access	hydrocarbons.	

Deep	disposal	wells	inject	
produced	water,	or	

fracking	flowback	water,	
to	get	rid	of	it.	



Guy-Greenbrier, Arkansas Sequence
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Horton	(2012),	SRL	
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3 Months Guy-Greenbrier Induced Seismicity





3 Quarry Blasts



43/24	

Quarry Image, 2009-07-23



44/24	

Quarry Image, 2010-09-15

Most	likely	loca+on	of	quarry	blasts	on	
2010-06-24,	2010-07-02,	2010-08-10:	
(35.2928,	-92.3973,	0	km	depth)	
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Improved	P	and	S-wave	velocity	
structure	based	on	known	
quarry	blasts	using	Velest.	
	
Sparse	network	–	(3)	3-
component	staOons		
hypo-DD	using	P	and	S	
	
700	m	a	posteriori	adjustment.	
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Wastewater	injec+on	well	
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S+mula+on	at	
nearby	well	



Cluster #1: 3143 events �
(667 located + 2525 assigned)



Further Evidence for Earthquakes �
Induced by Hydraulic Stimulation
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Composite Focal Mechanism
N60°E		Shmax		
(Hurd	and	Zoback,	2012]	

If double-couple, plane of seismicity is right-lateral – contrary to stress.  
More likely that first motions reflect combined tensile & shear failure. 



Consistent	with	hydraulic	
diffusivity	of	D	≈	1	m2/s	



Conclusions I

Both	wastewater	injecOon	and	hydraulic	sOmulaOon	
appear	to	trigger	earthquakes	–	probably	some	natural	
earthquakes	as	well.	
	
It	is	challenging	to	disentangle	different	influences	–	
requires	good	data	(both	seismic	and	injecOon).	
	
Precision	seismology	is	a	powerful	tool	to	provide	a	clearer	
picture	of	induced	seismicity	and	the	nucleaOon	process	to	
the	extent	it	is	expressed	in	seismicity.	



Conclusions II

Seismology	has:	
•  Long	duraOon	data	(Large-T)	
•  Big	networks	(Large-N)		

è	FAST	algorithm	enables	
data-driven	discovery	

More	data	

More	memory	

More		
compuOng	
power	

Need	bemer	
algorithms	

Now	 Future	



Scale of Effort 

Yoon et al. (2015)       (2017a)         (2017b) 

Progress on FAST for Large-T Problems 

•  140x	FASTer	than	original.	

•  Reduced	memory	requirements.	

•  Reduced	false	detecOon	rate.	

•  Improved	post-processing.	

•  Working	towards	public	release.	



FAST for a Decade of Continuous Data 

Yoon	et	al.	(2017b)	



FAST over a Network 

Bergen	and	Beroza	(2017)	



Network FAST for Iquique 

~580	new	detecOons	in	17	days	before	the	mainshock.	
	
Can	be	used	as	templates	to	increase	that	number.	



Machine Learning for Earthquake Detection 

Huot	et	al.	(2017)	

Labeled	data	as	input	to	neural	network		
(most	of	what	we	record	is	noise)	



Huot	et	al.	(2017)	

99.5%	accuracy	when	trained,	validated	and	tested	on	one	staOon.	
	
Accuracy	drops	to	98.2%,	with	mulOple	staOons	but	with	only	a	limited	data	set.	

ML for Earthquake Detection 



Scale of Seismic Observations

Nakata (2017) 



Merci 


