The FAST Method for Earthquake Detection: Application to Seismicity During the Initial Stages of the Guy-Greenbrier, Arkansas, Earthquake Sequence

Clara Yoon, Karianne Bergen, Ossian O'Reilly, Fantine Huot, Bill Ellsworth, Greg Beroza (Stanford University) Yihe Huang (University of Michigan)

Earthquakes: Nucleation, Triggering, Rupture, and Relationships to Aseismic Processes October 3, 2017, Cargese

Earthquake Monitoring Across Scales (meters)

Standard Approach to Detection/Location

- (2) Association
- (3) Location
- (4) Characterization

Standard approach works well when...

OTHINA

11/03/18 E.YYIM.U

Events are recorded at > 3 stations Events are impulsive Events don't overlap

12.10

Standard approach works less well for ...

...weak events with emergent arrivals (like LFEs)

Katsumata and Kamaya [2003]

Standard approach works less well for ...

11/03/18 E YYIM U

...small events with too few arrivals to locate

Standard approach works less well for ...

... Overlapping Events during intense activity

38 Repeats of Earthquake on the Calaveras Fault

Slip occurring at different times in the same place, generates identical seismograms.

We can look for a repeating signal from a repeating source, but most sources don't exactly repeat.

Adjacent Earthquakes on the Calaveras Fault

Template-based detection is powerful (few Type II errors)

LFEs planted in real data at snr of 0.1

34/36 are detected

Shelly et al. [2007]

Informed Similarity Search

Need template waveform *a priori*

Exhaustive Search for Similar Waveforms

"Autocorrelation" - <u>Uninformed</u> search for similar signal – detect events by cross correlating all window pairs.

Brown et al. [2008]

Autocorrelation for LFE Detection

Aguiar et al. [2017]

Aguiar et al. [2017]

Naïve Uninformed Similarity Search

Shazam – identify songs from a sample of recording.

Soundhound – identify songs from singing (seriously).

Some Big Data Technologies for Similarity Search

CopyLeaks – detect plagiarism

TinEye – Search the web for the source of a known image.

YouTube – detect copyright infringement

Altavista – remove duplicate web pages from search results

FAST (Fingerprinting And Similarity Thresholding)

- "Fingerprint" waveform with sparse, diagnostic description
- Store fingerprints in database and search it efficiently

Step 1: Time Series to Spectrogram

Step 2: Spectrogram to Spectral Images

To find short duration events, divide spectrogram into overlapping spectral images

Step 3: Spectral Image to its Wavelet Transform

Goal: compress nonstationary seismic signal

 Compute 2D discrete wavelet transform (Haar basis) of spectral image to get wavelet coefficients

Step 4: Wavelet Transform to Top Coefficients

Key discriminative features are concentrated in a few wavelet coefficients with highest deviation

- Keep only sign (+ or -) of these coefficients, set rest to 0

Data compression, robust to noise

Step 5: Top Coefficients into a Binary Fingerprint

Fingerprint must be compact and sparse to store in database

Convert top coefficients to a binary sequence of 0's, 1's

• Negative: 01, Zero: 00, Positive: 10

Jaccard Similarity

How similar are 2 binary fingerprints?

Jaccard similarity: "resemblance" $J(A,B) = \frac{|A \cap B|}{|A \cup B|}$

В

Fingerprints Should be Discriminative

QQ

Sign in

Names are compact, but not discriminative.

How to select "discriminative" coefficients?

Red represents intersection of fingerprints for samples 1 and 2.

True Detections vs. False Positives

Don't choose largest coefficients, choose those on the tails of a distribution.

Suppresses false detections of persistent noise, but maintains high accuracy for relatively rare earthquake signals.

Trade-off Curves

FAST Workflow

Min-Hash uses multiple random hash functions to map a binary fingerprint to a single integer.

The probability of two fingerprints A and B mapping to the same integer is equal to their Jaccard similarity.

Min-Hash reduces dimensionality while preserving the similarity between A and B in a probabilistic manner. Locality Sensitive Hashing groups similar fingerprints drawn from a high-dimensional space with high probability

Yoon et al. (2015)

Why is FAST Fast for Large T?

Why is FAST Fast for Large T?

Yoon et al. (2015)

Guy-Greenbrier Sequence in Arkansas

Hydraulic Stimulation (Fracking) wells use a staged injection of fluid to increase permeability and access hydrocarbons.

Deep disposal wells inject produced water, or fracking flowback water, to get rid of it.

Guy-Greenbrier, Arkansas Sequence

3 Months Guy-Greenbrier Induced Seismicity

3 Quarry Blasts

2010-06-24T17:14:48.44 · 2010-06-24T17:15:18.44

2010-08-10T22:37:30.3 - 2010-08-10T22:38:00.3

2010-07-02T22:11:47.04 · 2010-07-02T22:12:17.04

Quarry Image, 2009-07-23

Quarry Image, 2010-09-15

Improved *P* and *S*-wave velocity structure based on known quarry blasts using Velest.

Sparse network – (3) 3component stations hypo-DD using *P* and *S*

700 m *a posteriori* adjustment.

Group Earthquakes into Clusters (-1.1 < M < 1.8)

Cluster #1: 3143 events (667 located + 2525 assigned)

Composite Focal Mechanism

If double-couple, plane of seismicity is right-lateral – contrary to stress. More likely that first motions reflect combined tensile & shear failure.

Conclusions I

Both wastewater injection and hydraulic stimulation appear to trigger earthquakes – probably some natural earthquakes as well.

It is challenging to disentangle different influences – requires good data (both seismic and injection).

Precision seismology is a powerful tool to provide a clearer picture of induced seismicity and the nucleation process to the extent it is expressed in seismicity.

Conclusions II

<u>Now</u>

Seismology has:

- Long duration data (Large-T)
- Big networks (Large-N)

➔ FAST algorithm enables data-driven discovery

Need better algorithms More data

Future

More memory

More computing power

Progress on FAST for Large-T Problems

- 140x FASTer than original.
- Reduced memory requirements.
- Reduced false detection rate.
- Improved post-processing.
- Working towards public release.

FAST for a Decade of Continuous Data

Yoon et al. (2017b)

FAST over a Network

Combine matching earthquake pairs at different stations (consistent inter-event time intervals); reduce false detections

Bergen and Beroza (2017)

Network FAST for Iquique

~580 new detections in 17 days before the mainshock.

Can be used as templates to increase that number.

Machine Learning for Earthquake Detection

Labeled data as input to neural network (most of what we record is noise)

Huot et al. (2017)

ML for Earthquake Detection

99.5% accuracy when trained, validated and tested on one station.

Accuracy drops to 98.2%, with multiple stations but with only a limited data set.

Huot et al. (2017)

Merci