Imaging shear strength along subduction faults

Quentin Bletery (University of Oregon)

Amanda M. Thomas, Alan W. Rempel (University of Oregon) Jeanne L. Hardebeck (USGS)

October the 5th of 2017

Subduction faut

Mega-earthquakes rupture planar megathrusts (K_s : dip angle gradient)

Bletery et al., Science, 2016

Control of geometry on the distribution of shear strength?

 $\tau^{c} = \mu(\sigma_{n} - p)$

 τ^{c} shear strength μ coefficient of friction σ_{n} normal stress p pore fluid pressure

Andersonian theory of faulting

Subduction model

Stress orientation (ψ) on subduction zones

Hardebeck, Science, 2015

Analytic derivation of the shear strength τ^c

$$\boldsymbol{\sigma} = \begin{pmatrix} \sigma_{zz} + \Delta \sigma & \frac{\Delta \sigma}{2} \tan 2\psi \\ \frac{\Delta \sigma}{2} \tan 2\psi & \sigma_{zz} \end{pmatrix}$$
$$= \left\{ \begin{array}{l} \sigma_n = (\boldsymbol{\sigma} \cdot \boldsymbol{n}) \cdot \boldsymbol{n} = \sigma_{zz} + \frac{\Delta \sigma}{2} (1 - \cos 2\delta + \tan 2\psi \sin 2\delta) \\ \tau = (\boldsymbol{\sigma} \cdot \boldsymbol{n}) \cdot \boldsymbol{s} = -\frac{\Delta \sigma}{2} (\sin 2\delta + \tan 2\psi \cos 2\delta) \\ |\tau^c| = \mu (\sigma_n^c - p) \text{ (Mohr-Coulomb failure criterion)} \end{array} \right.$$

$$\tau^{c} = \frac{\mu(\sigma_{zz} - p)\sin(2\delta + 2\psi)}{\sin(2\delta + 2\psi) + \mu[\cos(2\delta + 2\psi) - \cos 2\psi]}$$

 $\tau^{\it c}$: shear strength μ : coefficient of friction

 σ_{zz} : vertical stress p : pore fluid pressure $\begin{array}{l} \delta : \text{ apparent dip angle} \\ \psi : \text{ stress field orientation} \end{array}$

Numerical computation

Assumptions : $\begin{cases} \sigma_{zz} = \rho gh & \text{Pressure of the upper plate} \\ p = \rho_w gh & \text{Hydrostatic pore pressure} \end{cases}$

$$\tau^{c} = \frac{\mu(\rho - \rho_{w})gh\sin(2\delta + 2\psi)}{\sin(2\delta + 2\psi) + \mu(\cos(2\delta + 2\psi) - \cos 2\psi)}$$
$$\delta = \arctan(\sin(\phi - \lambda)\tan\theta)$$

- $$\begin{split} \mu &: \text{coefficient of friction} \\ \rho &: \text{bulk density of the crust} \\ \rho_w &: \text{bulk density of water} \\ g &: \text{gravity acceleration} \\ \delta &: \text{apparent dip angle} \end{split}$$
- *h* : depth (slab1.0 + ETOPO2 models)
- ϕ : strike angle (slab1.0)
- θ : dip angle (slab1.0)
- λ : convergence direction (NNR-MORVEL56)
- ψ : stress field orientation (Hardebeck, Science, 2015)

$$g=9.8\mathrm{m/s}^2$$
, $ho=2700\mathrm{kg/m}^3$, $ho_w=1000\mathrm{kg/m}^3$, $\mu=0.6$

Computed shear strength

Shear-strength gradient

Quentin Bletery (University of Oregon)

Norm of the shear-strength gradient

Quentin Bletery (University of Oregon)

Imaging shear strength along subduction faults

Mega-earthquakes occur on areas of homogeneous τ^c (i.e. low τ^c gradient)

Conclusions

Variations of the shear strength (τ^c) may be estimated along subduction faults.

Mega-earthquakes seem to occur on areas of homogeneous shear strength.

Limitations : hydrostatic pore pressure $p = \rho_w gh$ and constant μ assumptions possible larger variations of ψ at small scale.

Perspectives : explore different pore pressure laws and variable coefficient of friction. Other subduction faults.

Apparent dip angle

$$egin{aligned} &a = c \sin(\phi - \lambda) \ &b = a an heta \ &b = c an \delta \ &c an \delta = a an heta \end{aligned}$$

$$an \delta = \sin(\phi - \lambda) an heta$$

 $\delta = \arctan[\sin(\phi - \lambda) \tan \theta]$

Computed shear strength assuming $\mu = 0.1$ instead of $\mu = 0.6$

Mega-earthquakes occur on areas of homogeneous au^c ($\mu = 0.1$)

