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Mega-earthquakes rupture planar megathrusts (Ks : dip angle gradient)
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Bletery et al., Science, 2016
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Control of geometry on the distribution of shear strength ?

τ c = µ(σn − p)
τ c shear strength

µ coefficient of friction
σn normal stress

p pore fluid pressure
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Andersonian theory of faulting
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Subduction model
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Stress orientation (ψ) on subduction zones
ψ
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 θ

ψ

Hardebeck, Science, 2015

Hardebeck, Science, 2015
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Analytic derivation of the shear strength τ c

σ =

(
σzz +∆σ ∆σ

2 tan 2ψ
∆σ
2 tan 2ψ σzz

)

=>

{
σn = (σ · n) · n = σzz + ∆σ

2 (1− cos 2δ + tan 2ψ sin 2δ)

τ = (σ · n) · s = −∆σ
2 (sin 2δ + tan 2ψ cos 2δ)

|τ c | = µ(σcn − p) (Mohr-Coulomb failure criterion)

τ c =
µ(σzz − p) sin(2δ + 2ψ)

sin(2δ + 2ψ) + µ[cos(2δ + 2ψ)− cos 2ψ]

τ c : shear strength
µ : coefficient of friction

σzz : vertical stress
p : pore fluid pressure

δ : apparent dip angle
ψ : stress field orientation
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Numerical computation

Assumptions :

{
σzz = ρgh Pressure of the upper plate
p = ρwgh Hydrostatic pore pressure

τ c =
µ(ρ− ρw )gh sin(2δ + 2ψ)

sin(2δ + 2ψ) + µ(cos(2δ + 2ψ)− cos 2ψ)

δ = arctan(sin(φ− λ) tan θ)

µ : coefficient of friction
ρ : bulk density of the crust
ρw : bulk density of water
g : gravity acceleration
δ : apparent dip angle

h : depth (slab1.0 + ETOPO2 models)
φ : strike angle (slab1.0)
θ : dip angle (slab1.0)
λ : convergence direction (NNR-MORVEL56)
ψ : stress field orientation (Hardebeck, Science, 2015)

g = 9.8m/s2, ρ = 2700kg/m3, ρw = 1000kg/m3, µ = 0.6
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Computed shear strength
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Shear-strength gradient
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Norm of the shear-strength gradient
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Mega-earthquakes occur on areas of homogeneous τ c (i.e. low τ c gradient)
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Conclusions

Variations of the shear strength (τ c) may be estimated along subduction faults.

Mega-earthquakes seem to occur on areas of homogeneous shear strength.

Limitations : hydrostatic pore pressure p = ρwgh and constant µ assumptions
possible larger variations of ψ at small scale.

Perspectives : explore different pore pressure laws and variable coefficient of friction.
Other subduction faults.
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Apparent dip angle
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δ = arctan[sin(φ− λ) tan θ]

a = c sin(φ− λ)
b = a tan θ
b = c tan δ

c tan δ = a tan θ

tan δ = sin(φ− λ) tan θ
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Computed shear strength assuming µ = 0.1 instead of µ = 0.6

125˚ 130˚ 135˚ 140˚ 145˚ 150˚ 155˚

25˚

30˚

35˚

40˚

45˚

50˚

0 20 40 60 80 100
MPa

τc (μ = 0.1)
Earthquakes stress drops

[Uchide et al., 2014]

140˚ 141˚ 142˚ 143˚ 144˚ 145˚

37˚

38˚

39˚

40˚

41˚

0 10 20 30 40
MPa

Quentin Bletery (University of Oregon) Imaging shear strength along subduction faults October the 5th of 2017 16 / 19



Mega-earthquakes occur on areas of homogeneous τ c (µ = 0.1)
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