Foreshocks of M9.0 Tohoku earthquake

Kato et al. (Science 2012)

Foreshocks of M9.0 Tohoku earthquake

Eleven $4.0 \le m \le 5.5$ *earthquakes between* 14/1/2011 *and* 27/2/2011

Is this activity in early 2011 anomalous?

Ding et al. BSSA 2015

Station: AB49

Far-field co-seismic:
$$\int y(t) = g H(t - t_0)$$
$$g \sim \frac{M_0}{r}$$

Kato et al. (Proc. Jap. Acad.) 2017

Far-field co-seismic (GPS):
$$\int g^{-1} y(t) = g H(t - t_{0})$$
$$g^{-1} \frac{M_{0}}{r}$$

GPS:

$$y(t) = a + bt + c\sin(2\pi t + \varphi) + d\sin(4\pi t + \psi) + \sum_{i} g_{i}H(t - t_{i}) + k_{i}\log(1 + \frac{t - t_{i}}{\tau_{i}})H(t - t_{i})$$

Only the largest shocks

N(t) = secular + triggered(aftershocks)

www.corssa.org

CORSSA: the Community Online Resource for Statistical Seismicity Analysis

D. Vere-Jones, M. Naylor, K. Orfanogiannaki, D. Harte, S. Husen, J. Hardebeck, A. Mignan, J. Woessner, L. Gulia, S. Wiemer, M. Wyss, E. Hauksson, J. Zhuang, M. Werner, S. Hainzl, S. Zhou, S. Steacy, D. Marsan, T. Iwata, T. van Stiphout, S. Touati, J. D. Zechar

HOME ARTICLES - GLOSSARY CONTACT Q

CORSSA articles in Theme IV

Earthquake location accuracy

Completeness magnitude in earthquake catalogs

Catalog artifacts and quality control

What is an instrumental seismicity catalog?

CORSSA articles in Theme V

Basic models of seismicity: temporal models

Basic models of seismicity: spatiotemporal models

Seismicity models based on Coulomb stress calculations

Earthquake triggering caused by the external oscillation of stress/strain changes

Seismicity rate changes

Seismicity declustering

Stochastic simulation of earthquake catalogs

CORSSA articles in Theme VI

Evaluating earthquake predictions and earthquake forecasts: a guide for students and new researchers

Gardner and Knopoff BSSA 1974 Reasenberg JGR 1985

Single link clusters (Davis and Frohlich, GJI, 1991)
 Stochastic declustering (Zhuang et al., JASA, 2002)

For earthquake E, find its trigger among all previous shocks H_i

Bayes
$$P(H_i|E) = \frac{P(E|H_i)}{\sum_i P(E|H_i)}$$

$$P(E|H_i) = \text{Probability 1 earthquake E in} \begin{bmatrix} volume [\underline{x}, \underline{x} + d\underline{x}] \\ interval [t, t+dt] \\ interval [m, m+dm] \end{bmatrix}$$

For earthquake E, find its trigger among all previous shocks H_i

An earthquake can also occur **spontaneously**: it is not the aftershock of a (known) previous mainshock

 H_0 = no seismic trigger

$$P(E|H_0) = \mu \, d\underline{x} \, dt \, dm$$

$$P(H_0|E) = \frac{\mu}{\mu + \sum_i \lambda_i}$$
$$P(H_i|E) = \frac{\lambda_i}{\mu + \sum_i \lambda_i}$$

For earthquake E, find its trigger among all previous shocks H_i

$P(E) = P(E|H_1)P(H_1) + P(E|H_2)P(H_2)$

only if H_1 and H_2 are independent

Is this the case?

Triggering according to rate-and-state friction

For earthquake E, find its trigger among all previous shocks H_i

 $P(E) = P(E|H_1)P(H_1) + P(E|H_2)P(H_2)$

only if H_1 and H_2 are independent

Is this the case?

No according to rate-and-state

- Departure is only significant at short time scales
- Departure vanishes when $\Delta t \rightarrow \infty$
- Total N is linear

Static stress triggering with rate-and-state

$$M = 3$$
 earthquake (L = 400 m, u = 1 cm)

Marsan and Lengliné (JGR) 2010

Rate-and-state friction

$$n = \#$$
 of direct aftershocks in time $[0, t]$ and distance $[R_1, R_2]$

$$n = \mu \left(R_1, R_2 \right) t_a \left\{ \ln \left(e^{t/t_a} + e^{-\Delta CFF/A\sigma} - 1 \right) + \frac{\Delta CFF}{A\sigma} - \frac{t}{t_a} \right\}$$

Dieterich (JGR) 1994

Rate-and-state friction

$$n = \#$$
 of direct aftershocks in time $[0, t]$ and distance $[R_1, R_2]$

-

$$n = \mu \left(R_{1}, R_{2} \right) \quad t_{a} \left\{ \ln \left(e^{t/t_{a}} + e^{-\Delta CFF/A\sigma} - 1 \right) + \frac{\Delta CFF}{A\sigma} - \frac{t}{t_{a}} \right\}$$

Background density
$$\mu(\mathbf{R}) \sim \mathbf{R}^{1.65}$$

Total number N grows in L^{1.65} ~ M_o^{0.55}

For earthquake E, find its trigger among all previous shocks H_i

 $P(E) = P(E|H_1)P(H_1) + P(E|H_2)P(H_2)$

only if H_1 and H_2 are independent

Is this the case?

No according to rate-and-state

- Departure is only significant at short time scales
- Departure vanishes when $\Delta t \rightarrow \infty$
- Total N is linear

<u>But :</u>

- Rate decays in t⁻¹
- Rate decays in r^{-γ} (γ≈2)
- Total N grows in M_o[×] (x≈0.5)

For earthquake E, find its trigger among all previous shocks H_i

$$P(H_{0}|E) = \frac{\mu}{\mu + \sum_{i} \lambda_{i}}$$

$$P(H_{i}|E) = \frac{\lambda_{i}}{\mu + \sum_{i} \lambda_{i}}$$

$$\lambda_{i} = \frac{Ke^{\alpha m}}{(t+c)^{p}} (r+L_{m})^{-\gamma}$$

• Compute P(H_{i}|E) and P(H_{0}|E) for all earthquakes E
• Smooth P(H_{0}|E) in space and time

$$\mu(x,y,t)$$

• Iterate until convergence

Marsan et al. JGR 2013

Yokota and Koketsu (Nat. Comm., 2015)

Yokota and Koketsu (Nat. Comm., 2015)

Mavrommatis et al. (GRL 2014) Heki and Mitsui (EPSL 2013)

Rate change of background activity 1990 – 2011

Mavrommatis et al. (GRL) 2015

2008 M7.0 Ibaraki earthquake

Mavrommatis et al. (GRL) 2015

Plate interface geometry in the Kanto region and model setting. The blue and red iso-depth contours (10-km intervals) represent the NAM-PHS and NAM/PHS-PAC plate interfaces, respectively. The blue-stippled portion of the NAM-PHS plate interface and the pink-coloured portion of the PHS-PAC plate interface show the model regions for inversion analysis. The blue and red arrows indicate the steady slip vectors at the NAM-PHS and PHS-PAC plate interfaces, respectively. NAM, North American plate; PHS, Philippine Sea plate; PAC, Pacific plate. Noda et al. 2013.

Noda et al. 2013

Figure 3

Slip deficit distribution on the Philippine Sea slab deduced from the GPS velocity data in Figure 2. Solid contours show magnitudes of slip deficit vectors. Dashed contours denote the configuration of the Philippine Sea slab. Thick arrows indicate relative plate motion of the Pacific plate (PA-NA) and the Philippine Sea plate (PH-NA) with respect to the North American plate.

Figure 6

Comparison of the slip distribution of the 1996 Boso silent earthquake (DOY 144), the slip deficit distribution in Figure 3, and the plate configuration (dashed contours). Squares denote hypocenters of shallow (depth < 50 km) earthquakes during DOY 136–144 of 1996. Clusters 1 and 2 are seismicity associated with the silent earthquake.

Sagiya PAGEOPH 2004

Ozawa GRL 2014

Reverso et al. GRL 2016

Figure 4. Inferred displacement at Boso, using our estimated background rate, and the relationship of Figure 3. The dashed curve is obtained after removing the SSEs; the thick curve has also the transients A_1 - A_3 and the direct effect of the 2011 Tohoku-Oki earthquake removed. The best quadratic polynomial fit is shown. It yields a fixed displacement of 11.4 cm between the 1996, 2002, 2007 and 2011 SSEs.

Figure 2. Cumulative number of earthquakes (in red) and time series of the background seismicity rate μ_{xyt} (in blue) for the Boso area. The three transients occurring outside the five known SSEs are labeled A_1 , A_2 , and A_3 .

Figure 3. Detected swarms and swarm ratios in the southern Japan Trench. (a) Hypocenters of swarms detected by our analysis. Hypocenters of detected swarms are shown as small circles and colored according to their occurrence time. The hypocenter of the 2008 *M* 6.9 Ibaraki-Oki earthquake is indicated by the blue star. The color shading denotes areas where more than 10 m of slip occurred during the 2011 Tohoku earthquake [*Ide et al.*, 2011]. (b) Swarm ratios calculated for each detection circle. The large circle is an example of a detection circle of radius 30 km; the small circles indicate the center of each detection circle and are colored according to the computed swarm ratio.

12 m / 2000 years = **0.6 cm / year** only

(instead of 2 to 3 cm / year)

Shishikura 2014

$$\lambda_i = \frac{Ke^{\alpha m}}{(t+c)^p} (r+L_m)^{-\gamma}$$

OK for aftershocks

But not for other processes, eg LFE during SSE

Only assume linearity and search for a mean-field solution

Marsan and Lengliné 2008

(Maximization)
$$\lambda_{j,k,l} = \frac{n_{j,k,l}}{n_l \ \delta t_k \ \delta V_j}$$
window duration shell volume

Predictive policing

۲	CHICAGO DATA PORTAL					Browse	e Tutorial Feedback 🛛 🔂 🕊	Yau Q Sign In
Crin	nes - 2001 to p	present					א f ש 🖂 🗖 🔍	Find in this Dataset
This	dataset reflects repo	orted incidents of crime (v	vith the exception of m	urders	where data exists for 🕨	🗱 Manage 🛷 Mo	re Views 🍸 Filter 🔀 Visualize 🕞 Export	Discuss 🕻 Embed 👔 About
	ID ⊕ ⊟	Case Number	Date 6) ⊞	Block	IUCR 🔀 🗄	Primary Type 🚯 🗄	Description
34 🚝	11094312	14439983	× 09/20/2017 10:57:00	D PM 0	47XX W VAN BUREN ST	1434	WEAPONS VIOLATION	UNLAWFUL POSS OF HANDGUN
35	11094322	1439945	09/20/2017 10:56:00	D PM 0		0414	BATTERY	AGGRAVATED: HANDGUN
36	11094322	1439951	09/20/2017 10:55:00	D PM 0	04XX E 79TH ST	0314	BOBBERY	
37 =	11094268	1439941	09/20/2017 10:53:00	D PM 0	AOXX W GLADYS AVE	0486	BATTERY	DOMESTIC BATTERY SIMPLE
38	11094257	1439991	09/20/2017 10:51:00	D PM 0	80XX S COTTAGE GROVE	5111		
39	11094286	1439940	09/20/2017 10:51:00	D PM 0	67XX S RIDGELAND AVE	1310		
40 =	11094289	14439956	09/20/2017 10:41:00) PM 0	40XX W DIVISION ST	0530		AGGRAVATED: OTHER DANG WE
41 :=	11094244	1439935	09/20/2017 10:37:00) PM 0	34XX W MADISON ST	1661	GAMBLING	GAME/DICE
42 =	11094265	IA439933	09/20/2017 10:36:00) PM 0	38XX W COLUMBUS AVE	0486	BATTERY	DOMESTIC BATTERY SIMPLE
43	11094521	JA440195	09/20/2017 10:30:00) PM 0	92XX S FOREST AVE	0920	MOTOR VEHICLE THEFT	
44	11094255	IA439930	09/20/2017 10:30:00) PM 0	12XX N LAVERGNE AVE	0630	BURGLARY	
45 🗐	11095035	IA440798	09/20/2017 10:30:00) PM 0	62XX S KILPATRICK AVE	0820	THEFT	\$500 AND UNDER
46	11094295	IA439965	09/20/2017 10:30:00) PM 0	69XX S HONORE ST	0810	THEFT	OVER \$500
47 🗐	11094288	IA439967	09/20/2017 10:30:00) PM 0	11XX S DELANO CT E	1310	CRIMINAL DAMAGE	TO PROPERTY
48 🗄	11094296	JA439939	09/20/2017 10:28:00) PM 0	71XX S VINCENNES AVE	0460	BATTERY	SIMPLE
49 🗄	11094333	JA439962	09/20/2017 10:21:0	D PM 0	14XX N CLEVELAND AVE	0460	BATTERY	SIMPLE
50 🗄	11094263	JA439943	09/20/2017 10:17:0	D PM 0	34XX S DR MARTIN LUTHE	0860	THEFT	RETAIL THEFT
51 🗄	11094254	JA439894	09/20/2017 10:17:0	D PM 0	56XX W FULTON ST	1365	CRIMINAL TRESPASS	TO RESIDENCE
52 🗄	11094337	JA440028	09/20/2017 10:15:0) PM 0	21XX E 100TH ST	0486	BATTERY	DOMESTIC BATTERY SIMPLE
53 🗄	11095768	JA439925	09/20/2017 10:15:0) PM 0	28XX N LEAVITT ST	0320	ROBBERY	STRONGARM - NO WEAPON
54	11094666	JA440331	09/20/2017 10:15:0) PM 0	45XX N ASHLAND AVE	0820	THEFT	\$500 AND UNDER
55	11094232	JA439922	09/20/2017 10:09:0) PM 0	003XX E 35TH ST	2024	NARCOTICS	POSS: HEROIN(WHITE)
Totals		6438416						

6	CHICAGO DATA PORTAL				Browse	Tutorial Feedback 🐻 🕽	I Ma Q Sign In
This d	ataset reflects repo	present prted incidents of crime (with the exception of murde	rs where data exists for ▶	🗱 Manage 🛛 🐼 Mor	A f → M III C. e Views Y filter Y sualize C Export	Find in this Dataset
	ID 0 Ξ	Case Number	Date 🚯 🗄	Block 🚯 🗄	IUCR 0 ≔	Primary Type 🚯 🗄	Description
34 :≣	11094312	[A439983	▼ 09/20/2017 10:57:00 PM	047XX W VAN BUREN ST	143A	WEAPONS VIOLATION	UNLAWFUL POSS OF HANDGUN
35 🗄	11094322	JA439945	09/20/2017 10:56:00 PM	069XX S WOODLAWN AVE	041A	BATTERY	AGGRAVATED: HANDGUN
36 :≣	11094330	JA439951	09/20/2017 10:55:00 PM	004XX E 79TH ST	031A	ROBBERY	ARMED: HANDGUN
37 🗄	11094268	JA439941	09/20/2017 10:53:00 PM	040XX W GLADYS AVE	0486	BATTERY	DOMESTIC BATTERY SIMPLE
38 🗄	11094257	JA439991	09/20/2017 10:51:00 PM	080XX S COTTAGE GROVE	5111	OTHER OFFENSE	GUN OFFENDER: ANNUAL REGIS
39 🗄	11094286	JA439940	09/20/2017 10:50:00 PM	067XX S RIDGELAND AVE	1310	CRIMINAL DAMAGE	TO PROPERTY
40 🗄	11094289	JA439956	09/20/2017 10:41:00 PM	040XX W DIVISION ST	0530	ASSAULT	AGGRAVATED: OTHER DANG WE
41 🗄	11094244	JA439935	09/20/2017 10:37:00 PM	034XX W MADISON ST	1661	GAMBLING	GAME/DICE
42 ≔	11094265	JA439933	09/20/2017 10:36:00 PM	038XX W COLUMBUS AVE	0486	BATTERY	DOMESTIC BATTERY SIMPLE
43 🗄	11094521	JA440195	09/20/2017 10:30:00 PM	092XX S FOREST AVE	0920	MOTOR VEHICLE THEFT	ATT: AUTOMOBILE
44 ≔	11094255	JA439930	09/20/2017 10:30:00 PM	012XX N LAVERGNE AVE	0630	BURGLARY	ATTEMPT FORCIBLE ENTRY
45 🗄	11095035	JA440798	09/20/2017 10:30:00 PM	062XX S KILPATRICK AVE	0820	THEFT	\$500 AND UNDER
46 🗄	11094295	JA439965	09/20/2017 10:30:00 PM	069XX S HONORE ST	0810	THEFT	OVER \$500
47 ≔	11094288	JA439967	09/20/2017 10:30:00 PM	011XX S DELANO CT E	1310	CRIMINAL DAMAGE	TO PROPERTY
48 ≔	11094296	JA439939	09/20/2017 10:28:00 PM	071XX S VINCENNES AVE	0460	BATTERY	SIMPLE
49 🗄	11094333	JA439962	09/20/2017 10:21:00 PM	014XX N CLEVELAND AVE	0460	BATTERY	SIMPLE
50 🗄	11094263	JA439943	09/20/2017 10:17:00 PM	034XX S DR MARTIN LUTHE	0860	THEFT	RETAIL THEFT
51 🗄	11094254	JA439894	09/20/2017 10:17:00 PM	056XX W FULTON ST	1365	CRIMINAL TRESPASS	TO RESIDENCE
52 :≣	11094337	JA440028	09/20/2017 10:15:00 PM	021XX E 100TH ST	0486	BATTERY	DOMESTIC BATTERY SIMPLE
53 🗄	11095768	JA439925	09/20/2017 10:15:00 PM	028XX N LEAVITT ST	0320	ROBBERY	STRONGARM - NO WEAPON
54 🗄	11094666	JA440331	09/20/2017 10:15:00 PM	045XX N ASHLAND AVE	0820	THEFT	\$500 AND UNDER
55 ⊞	11094232	JA439922	09/20/2017 10:09:00 PM	003XX E 35TH ST	2024	NARCOTICS	POSS: HEROIN(WHITE)
Totals		6438416					

Predpol software is based on exactly the same algorithm as used for stochastic earthquake declustering

Contribution from #i

(Maximization)

shell surface

3. A SELF-EXCITING POINT PROCESS MODEL OF BURGLARY

For the purpose of modeling burglary we consider an unmarked self-exciting model for the conditional intensity of the form

$$\lambda(t, x, y) = \nu(t)\mu(x, y) + \sum_{\{k:t_k < t\}} g(t - t_k, x - x_k, y - y_k).$$
(10)

3. A SELF-EXCITING POINT PROCESS MODEL OF BURGLARY

For the purpose of modeling burglary we consider an unmarked self-exciting model for the conditional intensity of the form

$$\lambda(t, x, y) = \nu(t)\mu(x, y) + \sum_{\{k:t_k < t\}} g(t - t_k, x - x_k, y - y_k).$$
(10)

Figure 4. Marginal $g_{75}(t)$ (left) and marginal $g_{75}(x)$ (right) estimated using KDE based upon offspring/parent interpoint distances sampled from P_{75} .

Flag the N spots with highest $\boldsymbol{\mu}$ values

Mignan (Sci. Rep.) 2014

Uchida and Matsuzawa (EPSL) 2013

RE time series show clustering just as well as « normal » seismicity