Science that saves the world - from
forefront science to more resilient
socleties.



A prosperous, happy inter-seismic period.
It’s the year 2025 in northwest

Washington state, USA. Residents and
tourists enjoy majestic mountains,
pristine coastlines, and efficient clean
energy and transportation. Commerce
thrives on robust telecommunications
and transportation. Land-use planners,
policy-makers and business owners have
located infrastructure away from areas 24
most vulnerable to earthquake hazards, S
and invested wisely in hazard-mitigating * %
measures where most effective.
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Resilience-building products, underlain by science.
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1-Year Natural and Induced Earthquake Damage Forecast

impact forecasts
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educational materials

Non-fiction Literature

Hollywood

Educational Scenarios
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Forefront science provides the long-term context.

[ Tremor Rate

increasing —»

multi-disciplinary studies
define slipping surfaces
(where & how).

o Latitudeg
I

& newly defined tremor distribution in
central Alaska indicates the Yakutat
plate actively slips over the North
American plate (in addition/instead of
the Pacific plate).
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robust recurrence estimates require multiple

observation types

The onshore tsunami & coastal

: . The offshore turbidite &
uplift/subsidence record

sediment record
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limited earthquake observations necessitate cycle models
built on sound theory

Table 1. Summary of Equations®

i o O DR

iy o “We present a micromechanical model for rate and state
D friction in which the contact between the two surfaces
s occur via plastic and elastic contacts...

p_o e p———. we identify the state variable as representing the
[()n ‘: changes of plastic contact area...

L e e all macroscopic frictional parameters of the rate and
et s state framework are related to the parameters of the
S elementary contacts...

of the evolution law—equation {105)

We discuss the scaling of the frictional parameters for

for the evolution of friction —equaticn (38)
8 =Fp, v - %EVSE - %‘;ﬂd maodified evolution law—eguation (8] . . ))
Fio,v) = (1 =&)F8, 1) madified aging law —equation (9} a Ct Ive fa u Its a n d I a n d S I I d es .

N total number of contacts

Elastic contacts
N, number of elastic contacts

fo==% proportion of elastic contacts— equation {10b)

W resultant of the normal forces carried by elastic contacts

W, = % narmal force at an Individual elastic contact—equation (14a)

o rsuant of hetangena forces care by et contacs A micromechanical model of rate and state friction: 1. Static and
= friction coefficient of elastic contacts . T . . . . .

L dynamic sliding, Perfettini and Molinari, 2017 (NO pictures!)
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proportion of plastic contacts—equation (10¢)



theory underlies numerical earthquake cycle & rupture
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numerical models show patch size distribution creates a richness of slip
behaviors
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Multi-scale patch models: weakening (critical slip
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simulations, Aochi & Ide, 2017



Forefront science

enables safe energy production.
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Depth(Km)

lab measurements show stability
varies with pore pressure changes
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Depth (m)

dry lab experiments show creep also contributes to seismicity migration
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Depth (m)

dry lab experiments show creep also contributes to seismicity migration
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Understood signs of restlessness emerge

—~
- .Seattle
m
]

= Portland
m
Hydrate = & Pacific City
Ridge ‘g

Aware citizens note a cluster of M4-6 earthquakes offshore lasting several weeks.
Scientists are confident that the earthquakes are occurring along the
plate-interface below where the seafloor is slowly deforming, alerting them to

building stresses. Scientists notify emergency managers and public officials, who
begin to prepare.



Tantalizing scientific evidence of VERY early warning.

Foreshocks and slow slip commence 50 hours before the 2011 M9
Tohoku earthquake

Area of 2011 SSE

Ito et al, 2013

* 2011 M9 mainshock +
+
Slow slip event with Mw7.0
2011 M9 slip area 39" - +
+ +
. -ll' +/{,(t _F
2011 M9 slip > 30m O R
. t oML
¥ + ++f’f* ‘
09 March M7.3 ¥ :ﬁj‘,ﬁ} /
¢ foreshock and Feb age | Amersiip of Mar. o9 foresiionk qf\ i
2011 ~M5-5.5 events TN
09 March coseismic i +____.-——
slip area The 2011 Tohoku-Oki earthquake \
. o= Seismicity from Feb. 13 to Mar. 9
09 March aftersllp . + Seismicity from Mar. 9 to Mar. 11
area BT - " -
141°E 142 143 144




Scientific evidence for VERY early warning.
M6.2 foreshock coseismic and afterslip trigger M7.0 Kumamoto
earthquake, revealed in foreshock migration
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precursory intraplate earthquake rate increases synchronize with
interplate forbeshocks

Normalized cumulative number of events
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The public is informed as a great
earthquake unfolds. ’

Several days later, nearly two minutes of violent
ground shaking awakens the entire region, as the
Earth unleashes a M9.1 earthquake. The
offshore-onshore earthquake early warning system
accurately estimates the intensity of coming strong
shaking, giving citizens time to take cover and Offshore
businesses and infrastructure operators time to shut  stations * '“ R
down operations safely. ; TR

Legend
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Science interfaces with real-world affairs.
telecommunications, politics, public accountability
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Figure: Select Cities on 2014 Earthquake Shaking Map
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& new technologies that open sc:ent/flc front/ers
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MLe

Shaking depends on source scaling.
e?volving radiated energies reveals stress drop variability
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Log Displacement

‘departure time’ vs magnitude scaling implies ruptures aren’t
initially deterministic, but size soon becomes predictable
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Log Displacement

‘departure time’ vs magnitude scaling implies ruptures aren’t
initially deterministic, but size soon becomes predictable
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uncertainties & trade-offs often map into over-estimated hazard

M®6.0 Parkfield Earthquake — 13 Slip Models
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Coastal lands are reshaped and flooded,
but recovery is effective and efficient.

Tl ... e A A
Submergence -drowned foxe -'

surrounded by hlgh prced real estate
(Seattle).

Within minutes, huge tracks of coastal land drop, rivers change course, seawater
floods low-lying areas, and coastal wildlife habitats disappear. Tsunami waves
carry walls of water stories tall across coastlines. Citizens evacuate to safety. Initial
land-level change and tsunami forecasts are updated, feeding into evolving impact
assessments and situational awareness. Transportation is rerouted to avoid
submerged roads and rails, enabling rapid delivery of relief.



Resilience-building products, underlain by science.

horizontal & vertical tsunami evacuation preparations
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USGS pilot project; lacks splay fault and shaking-triggered
landslide sources.
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Crustal Tacoma fault earthquake-triggered tsunami maximum
inundation reaches ~12 feet, flooding begins in Tacoma area
within ~5 min (from WA Dept. of Natural Resources).



Forefront science & technology will provide initial
and updated land-level forecasts.

satellite imagery,
data at scales and
places not otherwise
reachable

G 8 v '
Before . 1Y ‘_ .{ I‘—’nqm IKONOS satelllte processed by the

December 2004 7’ Al _‘ : ’, t(',entlrta: for Remote Imaging, Sensing and
o | ¥ P,rocessmg Natl. Univ. of Singapore.




new & varied seafloor observations advance tsunami

generation understanding

A detailed source model for the Mw9.0 Tohoku-Oki earthquake reconciling
geodesy, seismology, and tsunami records, Bletery, Sladen et al., 2014
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new & varied seafloor observations advance tsunami

generation understanding

Tohoku prism normal faulting implies very low

dynamic friction (explains large megathrust slip?)
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A detailed source model for the Mw9.0 Tohoku-Oki earthquake reconciling
geodesy, seismology, and tsunami records, Bletery, Sladen et al., 2014
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laboratory experiments reveal new rupture processes

Photoelastic Image of Laboratory Slip Event Numerical Model of Laboratory Slip Event

Experimental evidence that thrust earthquake
ruptures might open faults, Gabuchian...Madariaga et al.,
2017



Success of informed designs/policies is

Neighborhood-scale Probabilistic Shaking

I O V e I I Ground Shaking ZUSGS
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ground shaking from a great subduction zone
earthquake proved accurate, saving lives and
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Science enhances predictive shaking models
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patchy slip/radiation verified observationally
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slip compactness affects shaking durations, focusing
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modeled shaking requires constraints from laboratory
experiments
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Recovery proceeds,along with aftershocks

Landslide Probability Liquefaction Probability

source: Nowicki and others (2014) source: Zhu and others (2016)
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Just as residents begin taking stock of impacts, aftershocks cause the ground to
tremble again and again. Their rates slow, but some exceed M7.5 and strike
hundreds of km from the rupture zone. Multi-disciplinary monitoring networks
issue updated forecasts regularly, foretelling not only of the changing rate, but
also of where aftershocks are most likely to strike. These calm a nervous public
and guide decisions about when and where engineers may safely inspect, and
insurance companies and businesses may wisely rebuild.



Forecasts rely on understanding seismicity rate changes
temporally and spatially!
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advances result from broad scientific perspectives

Ground-motion Fingerprinting

i — - rapid, automated event detection

Earthquake detection through
computationally efficient similarity
search, Yoon...Beroza, 2015




advances result from broad scientific perspectives

Ground-motion Fingerprinting

1 = rapid, automated event detection

Fast sorting for similarity-based event detection.
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Uniform California Earthquake Rupture Forecast (7-Days)
M 7.1 ‘HayWired.
e ey ¥t | - . :

o TR e\ forecasts consistent
« o over hours to millenia
require coordinated
science & model
testing

4 2 0
Log,,(Expected Num M=2.5) Forecast (UCERF3), Field...van der Elst, et al., 2017

A Synoptic View of the Third Uniform California Earthquake Rupture



Anticipated ground failures do no harm.

A g P S SRERE e :
Repeated shaking and delayed failures causes steep slopes to fail and slide, and areas built atop
fill and river sediments to liquefy, both onshore and offshore. An offshore landslide generates
another localized tsunami, but was anticipated as unstable submarine slopes were obvious in

coast-crossing hazard maps



High-resolution imagery & accurate failure/flow models
may guide resilient zoning.

Chenega
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The 1964 M9.2 Alaska
megathrust earthquake triggered
an extraordinarily large and
devastating tsunami at Chenega
Village (23 fatalities).
High-resolution seafloor
topography revealed that the
shaking caused a coastal
landslide, which generated
tsunami waves that were larger
than those from the M9.2
earthquake.



Studies of analog slipping systems provide transferable

insights to physics of slip. ce-guakes
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Shaking awakens volcanoes.

Mount St. Helens Lahar, 1980
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Rates of tiny earthquakes rise at one of the high-risk voIEanoes, and glacial summit ice begins
melting at another, culminating in an enormous river of mud and water that rushes down the
mountain. The lahar warning system sends alarms to citizens living along the likely flow path,
who evacuate. Ash cloud warnings guide airplanes to new courses that avoid catastrophic
intersections. Quiescence at other volcanoes is confirmed and air traffic continues safely and
without unnecessary shutdowns.




Science and monitoring underlie mitigation and
warning.
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modeling & high-resolution data elucidate mechanics of cascading
phenomena

1980 Mount St. Helens Debris Flow Model

On May 18", 1980 a M5.1
earthquake caused the summit
bulge to collapsed, uncorking a
spectacular eruption. Shaking
broke a natural dam, releasing
massive debris flows. LiDAR data
validate numerical modeling, to
be used for future forecasting.
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A prosperous, happy inter-seismic period.

It’s the year 2026 in northwest
Washington state, USA. Recovery from | f 'Y

last year’s powerful events is complete . Dt 5
—— A——Seattle’s Secret -

and life goes happily on! =~ Summer




