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Characteristics of Afterslip



Displacement (cm)

"
o

B
o

o)
=

Afterslip of Nias (2005, M =8.7)

LHWA B BSIM

0 100 200 300 0 100 200 300
Days after Nias-Simeulue earthquake

Postseismic slip grows as the log(time)

900¢ /e }e nsH



Cumulated number of aftershocks (M, >2)
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Afterslip is a rate strengthening
process

demonstration adapted from Avouac [2015]



Assuming that surface displacement evolves as the
logarithm of time and because the medium is elastic,
afterslip on the fault is given by

U=U,xlog(1+t/t,), U,>0 (1)
The frictional stress is related to fault slip by
=1, —KU, K>0 (2)
where K is the stiffness of the fault.
Differentiating (1) with respect to time gives
V=dU/dt=V,/(1+t/t,) (3)

with



Combining Egs. (1) with (2) gives
Using (3), (4) becomes

=1, +K U,xlog(V/V,) (5)

The growth of surface displacement with the logarithm of
time (Eq. (1)) and the presence of an elastic medium
(Eq. (2)) surrounding a slipping region of fixed sized (for
K to be defined) implies that the frictional stress is
rate strengthening and that the functional
dependence is logarithmic (so highly non-linear) as
observed in laboratory experiment..



Afterslip Models



Assuming steady-state rate and state friction

t=t.+A log(V/V.)
where
A=c(a-b)>0
o: normal stress
a, b: rate and state parameters

Marone et al. (1991) proposed the following form for
afterslip

U=(A/K) log(1+t/t,)+ V,t

t,=A/(KV_,)
V_: coseismic slip velocity
V| : loading or long term velocity
K: equivalent stiffness of the afterslip region



The formula
U=(A/K) log(1+t/t,)+ V,t

predicts

* Alogarithmic growth of postseismic slip as the
logarithm of time, consistent with the observations

* An infinite amount of afterslip at large time and no
return to a steady-state velocity

* The characteristic time t,=A/(KV,.) is mainshock
dependent throught V.



Perfettini and Avouac (2004) derived a modified
expression given by

U=V, t. log[1+(V./V )x(exp(t/t)-1)]
where

t=A/(KV,)
t.: duration of the postseismic phase

V.V, =exp(ACFS/A)

ACFS: Coulomb stress change induced by the
mainshock in the afterslip region



The formula U=Vt log[1+(V./V|)x(exp(t/t)-1)] implies

* Alogarithmic growth of postseismic slip as the
logarithm of time, consistent with the observations

* When t>>t, this expression implies that

Uu~v,t
And the long term sliding velocity of the creeping region
Is the loading velocity

» The characteristic time t=A/(KV_) is not mainshock
dependent

« V., is the sliding velocity of the creeping region right
after the mainshock



In the limit t<<t, U=Vt log[1+(V. /V )*(exp(t/t)-1)]
reduces to
U~V t log[1+t/t,], t<<t (I)
where
t,=(V /V,)t=A/(KV,)
Since V, t=A/K and t,=A/(KV_.), Eq. (I) reduces to
U=(A/K) log(1+t/t,) (1)

assuming V_.=V, so that t,=t,.



So the approach of Perfettini and Avouac (2004) reduces
to the one of Marone et al. (1991) in the limit of small
observation time (t<<t).

The characteristic time t=A/(KV,) is independent of the
mainshock and is related to the frictional properties
(through A) and size (through K) of the creeping region,
and on the loading (or long term) sliding velocity of the
creeping region.



Validity of the Steady-State
Approximation



vmax/v pl
3 3 3 3 3 3
= N @ > ” Y ~

) time/t,
‘010’7 10°° 10 10 10~ 10~ 10" 10° 10’
Velocity/V 4 4 5
8 pl x 10 8 10 8 10
2.2 14
6 2 6 6 12
12
1.8
4 4 4 10
1.6 10
2 2 2
1.4 8
8
ZL,0 1.2 0 0
1 6 6
-2 -2 -
0.8 2
4
4 06 -4 4 -4
0.4
-6 -6 2 -6 2
0.2
8 -8 -8
8 -6 -4 -2 0 2 4 6 8 = 8 6 -4 -2 0 2 4 6 8
X/L, )
5 x 10
8 10 8 10
18
6 6 9
16
8
4 14 4
7
2 12 2 6
0 10 0 5
8
-2 2 4
6 3
-4 4
4 2
-6 2 6 1
-8 -8
-8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 B 6 8

Perfettini and Ampuero (2008) showed that following a stress
step, the rate strengthening region starts to accelerate
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* An initial accelerating phase during which slip localize over a
region of size L,

« The acceleration phase is followed by a relaxation phase
where slip spreads in a crack-like manner

* The size of the acceleration region is L, =G d_/bo, similar to
the nucleation of a rate weakening fault
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The size of the acceleration region is L, =G d_/bo, similar to the
nucleation of a rate weakening fault
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If the size of the initial stress perturbation is larger than the
nucleation size L, =G d_/bo, there is an initial acceleration

phase

If the size of the initial stress perturbation is smaller than the
nucleation size L, =G d_/bo, there is no initial acceleration
phase and the steady state approximation is always valid



When existing, The duration of the acceleration
phase is t . ~(a/b) d_/V, where V.=V, exp(At/ao),
after which relaxation occurs at steady-state

Based on laboratory values, the duration of t,_,
spans an enormous range of short time scales, from
10-°sto a few days (depending on the value of d.)

The maximum velocity is V..~V exp[At/(a-b)o] as
it would be assuming the steady-state approximation

So deviations from steady-state, if existing, should
be noticeable only in the very early stage of the
postseismic phase



Physical Basis of the Rate
Strengthening Rheology



Eyring transition-state theory [Eyring, 1935] to determine
the frequency v with which an event occurs when it has
to overcome a potential energy barrier of height E_

v=v, exp[-(E, 2)/(kgT)]

t: applied stress
v,: reference frequency
Q: activation volume
(volume activated by the process)
T: temperature
kg: Boltzmann constant

Under the presence of body deformation, the height of the energy
barrier is reduced by an amount t<2.



Probability P, for the activated volume to move in the
direction of the applied stress

P.=P, exp[-E./(kgT)] exp[t2/(kgT)]

Probability P_ for the activated volume to move in the direction
opposite to the applied stress

P_=P, exp[-E_/(kgT)] exp[-tQ/(kgT)]
The mean sliding velocity is given by
V=V, [P, +P_]

V,: reference velocity



V=V. {exp[tQ/(ks T)] + exp[-tQ/(ksT)]}
with
V.=V, P, exp[-E./(kgT)]
yielding
V=2V. sinh[tQ/(k,T)]

To relate T to V, we assume that the probability of a
backward jump is negligible (P,>>P.)

V =V. exp[tQ/(kgT)]



Since
V =V. exp[tQ/(kgT)]
we get
t=A log(V/V.)
with
A=(kgT/Q)>0

So thermally activated processes (dislocation creep,
diffusion creep, pressure solution creep...) lead to a
logarithmic rate strengthening rheology.

The rheological parameter increases linearly with T.



Rate and state friction and the
Bowden-Tabor theory of friction



Because surfaces are rough, the frictional contact is
sustained by a small fraction (typically 0.1-1 %) of the
nominal contact area.

Dieterich and Kilgore, 1996



Therefore, the few contacts bearing the contact support
a huge load, beyond their elastic limit.

In the Bowden-Tabor theory of friction, it is assumed
that those contacts are plastic and that the frictional
force is given by

F = T2,

F: frictional force
T, plastic stress
2. real contact area
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Figure 1

Geometry of asperity junctions (schematic). Estrin and Bréchet, 1996




The frictional stress is given by

T=1,2/2,

t: frictional stress
2, total (nominal) contact area

We study small deviations from a reference state (...)"

T, = Tp. + At | A'cp|<<1:p*
2r = 2r + Azr! I AZr|<<2r

All parameters further derived will depend on the value
of the reference state.



T= (1, + At )X(Z, + AZ))/Z,
T= (1, 2,41, AZFAT Z AT, A/,

The term At, AZ is a 2" order term and is negligible (not
true if the perturbation is not infinitesimal)

T= (1, 2+, AZ AT 3 ),

It is assumed that under steady-state sliding (Arrhenius
type law or Eyring theory)

At ss=v) B log(V/V.)

B.<<1 : material constant
1:p*: plastic stress at the reference state
V.: sliding velocity in the reference state



= [r,) 2+ 2T, B, log(VIV.)+ t," AZ ss)/Z,

1, . frictional stress under steady-state sliding

The friction coefficient p=t/o. in steady state sliding is
given by

Uss = w+a log(VIV*) + 17 A3 55/(0.2)
o.. normal stress in the reference state
with
W=(t, /o) %(Z,1Z)

a=(x, 10:)% (2, TZ)B= B



It is assumed that under steady-state sliding
AS ss= -3 By log(VIV.)
Bs-<<1: material constant

Finally, we get
= u +(a-b) log(V/V*)
with
= (1, 710.)%(Z, TZ)Bs = Bt

We have related the w’, a, and b parameters to the
elementary parameters of the model.

Note that since a=p_u’, stability of frictional sliding is
controlled by the parameter

b/a = [32/[31



We will assume that the following equation
Uss = u+a log(VIV*) + 1.7 AZ 55/(0.2)
is valid away from steady-state so that
u = p+alog(VIV¥) + 1" AZ /(0.2)

Since b = (2,1, )/(0:Zy) By, the friction coefficient can be
written as

u = p+a log(VIV*) + b [AZ /(B Z)]



Comparing
u=u+alog(VIV*) + b [AZ/(B5Z,)]
with
u = u +a log(V/V*) + b log(6/6.)
gives
0 = 6. exp[AZ /(B= =, )]

The state variable is directly related to the changes
of contact area



Since
u = p+a log(VIV*) + t,” AZ /(0.2)
it is recommended to use the form
u=u+a log(V/IV*) + ®
as in this case
® =1, AZ/(0.2)

® is directly proportional to the changes of real
contact area



 The Bowden-Tabor theory of friction support the rate
and state framework

 To determine the evolution of friction, an evolution law
relating the state variable to the variable of the
system (slip, sliding velocity, normal stress,
temperature...) is required.

* The existing evolution laws were empirically derived.



The most popular evolution laws are the aging law

de/dt = 1-Ve/d,

and the slip law
de/dt = (-ve/d.) log(Vve/d.)

d. and d_ are derived using laboratory data and are
“evolution law” dependent.

Therefore, d_#d_



During static contact (V=0), the aging law becomes
do/dt=1
6=t+0(0)
0(0): value of the state variable at t=0

which is the main reason for the physical interpretation
of 0 as representing the age of the contacts.

During static contact and considering the aging law, the
changes of friction coefficient are given by

Ap=b log[0(t)/0,]=b log[1+t/6,]=AD



It Is observed experimentally on transparent materials
that during static contact, the surface area grows
logarithmically with time [Dieterich and Kilgore, 1996].
This phenomenon is responsible for frictional healing.

Since during stationary contact and under the aging law
A®P=b log[1+t/0,]
and given that ®=t," AZ /(0.Z), the logarithmic increase

of & with time is consistent with an increase of the
plastic contact area AZ_with time.



Consequently, the interpretation of the state variable as
the contact time is only true during stationary contact
and considering the aging law.

Assuming that friction obeys the Bowden-Tabor
theory, the proper physical meaning of the state
variable is that it is related to the changes of contact

area, not the contact time.



During static contact (V=0), the slip law implies that
do/dt=0
as do/dt=(-ve/d, )log(Ve/d. )=0 when V6/d_ =0

Therefore, the slip law predicts no evolution of the state
variable (and hence the contact area) during static
contact, contradicting laboratory experiments of frictional
healing.

But the slip law well adjust velocity steps In the
laboratory [Bhattacharya et al., 2015] while the aging law
does not.

None of the popular evolution laws are able to adjust
the entire spectrum of laboratory experiments.



URGENT NEED FOR NEW EVOLUTION
LAWSI!!!



CONCLUSIONS



The estimate of the frictional parameters (u., a, b,d )
are:

« Material dependent
« Evolution law dependent
« Reference state dependent
Therefore, it appears highly risky to compare the values
of the frictional parameters obtained considering

different experimental setups... Something that is
currently done.



What is the relevant rheology to model aseismic slip
(for instance afterslip)?

« Rate strengthening rheology (dislocation creep,
diffusion creep, pressure solution creep...) ?

« Rate and state friction under steady-state sliding ?

 Full rate and state friction ?



Under the Bowden-Tabor theory of friction, the state
variable is a proxy for the relative changes of real
contact area

The existing evolution laws (aging and slip) are
empirically derived

None of the existing evolution laws properly adjust
simultaneously velocity steps and frictional healing
experiments

Need for new evolution laws
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