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1.

The Mechanics of Slow Earthquakes and the
Spectrum of Fault Slip Behaviors

Friction laws: why do we need something as complex as
rate/state?

How do slow earthquakes work? What mechanism sets the
speed limit? Why are they slow?

. Speculations on how recent lab results may in apply in

nature. Scaling laws for a spectrum of slip modes from
slows earthquakes to super-shear rupture (SSE, LFE,
tremor, VLFE, ULFE, MLFE, BB-eq, elasto-dynamic EQS) .



Minimum requirements for a friction law for faulting

Adhesive Theory of Friction (Bowden and Tabor, 1950%)

® Real contact area << nominal area

e Stress at contact junctions is at the inelastic (plastic) yield strength
e Contacts grow with “age”

e Add: Rabinowicz’ s observations of static/dynamic friction

 J

“Static” friction is higher than “Dynamic” friction because contacts
are older (larger)

e -> implies that contact size decreases as slip velocity increases
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Coulomb’s law for shear failure

Byerlees Law for Rock Friction
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Time dependence of “static” friction  mwes Coulomb, 1785

T A+mT

Aging of frictional contacts (i o epos, i) (s riconforc, 1)
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Time dependence of friction in rocks; Aging (frictional healing)

Frictional Healing, Au
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Real contact area << nominal area; Contact stresses

Contact junctions grow with time (age)

are high

Dieterich and Kilgore [1994]



Vol. 143, 1994 Direct Observation of Frictional Contacts 285
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Minimum requirements for a friction law for faulting

* Aging (time dependence)

* Velocity dependence (kinetic friction
varies systematically with sliding
velocity)

« Stick-slip motion (repeated failure

followed by restrengthening)



Minimum requirements for a friction law for faulting

Friction: slick-slip and stability of sliding

Static-Dynamic Friction

H = Mg (3 — O) } Classical view
,u, — Md (S > O)

A

—
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Slip
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Rabinowicz 1951, 1956, 1958: Static vs. dynamic friction & state dependence

* Recognized that finite slip was necessary to achieve fully dynamic slip
* Experiments showed state, memory effects and that uy varied with slip
velocity.




JOURNAL OF APPLIED PHYSICS VOLUME 22, NUMBER 11 NOVEMBER, 1951

The Nature of the Static and Kinetic Coefficients of Friction

ErNEST RABINOWICZ
Lubrication Laboratory, Massachusetls Institute of Technology, Cambridge, Massachuselts

(Received May 23, 1951)

Experiments have been carried out to determine the transition between static and kinetic conditions when
stationary metal surfaces are set into motion, a simple method being used which measures the energy that
has to be given to one of the bodies to start it moving. The method is confined to cases in which the static
coefficient exceeds the kinetic. Using a load of 1 kg and metal surfaces of various kinds, it is found that the
static coefficient persists for distances of the order of 10~ cm, and then gradually falls off to values corre-
sponding to the kinetic coefficient. This behavior is shown to be consistent with a simple model based on the
assumption that the friction force is needed to shear metallic junctions formed between the metal surfaces.
The action of boundary lubricants is discussed, and it is shown that they can act either by diminishing the
metallic interaction directly, or by preventing its increase during the sliding process.
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Friction: 2nd order variations

(See Fig. 6.)
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Slip weakening friction law

Adhesive asperity contacts

a b 3
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2r S Bowden & Tabor, 1950%
Rabinowicz, 1951

Aging —friction increases w/ contact time

Ar Static friction is higher than Dynamic

friction because contacts are older
(larger) in “static” state

ar

Log time




E. Rabinowicz, Sci. Amer., 109, May 1956.
Adhesive asperity contacts

Slip weakening distance

Stick and Slip

When two substances rub against each other, they frequently stick
and then slip. The phenomenon accounts for the squeak of bearings,

the music of violins and many other sounds of our daily experience

by Ernest Rabinowicz



Rabinowicz, 1956

Brief History of Friction Scientific American
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Friction: 2nd order variations, slick-slip and stability of sliding

Slip Weakening Fri
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Critical friction distance
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Adhesive asperity contacts Rabinowicz, 1951, 1956
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 Contacts age (grow)
with time.

* Young contacts are
smaller than old
contacts.

* Contact age is given
Ar — Ar — by r/V

Log time Log V




Minimum requirements for a friction law for faulting

Adhesive Theory of Friction (Bowden and Tabor, 1950%)

® Real contact area << nominal area

Stress at contact junctions is at the inelastic (plastic) yield strength
Contacts grow with “age”

Add: Rabinowicz’ s observations of static/dynamic friction

“Static” friction is higher than “Dynamic” friction because contacts
are older (larger)

e -> implies that contact size decreases as slip velocity increases
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Minimum requirements for a friction law for faulting
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Stick-slip




Seismic cycle as repetitive stick slip instability

Brace & Byerlee, 1966 : :

Fy F 1
ip 2+ P 1s
4r P=65kb I dis - P=2.1kb i~
- 3
s . =
=~ \ 1 3
- - \ \ :
= s 0z \ \ H
= ° By VoA \ :
‘o L] : o \\ \ ‘\ o
= \ qo == 1y N\ Y 52
\ \ » w \ \ -
- VAVAWA 2 - \ \ &
w VAYA E . \ \ \ -
- \ - ° \ \ .
e 2 \[ Ay 2 \ \ 5
° b \ H o \ \ d2 2
° ° w \ \ -
w \ £ vy -
\N 4s \ [ ‘\f\f \ 4
A 3 (W IRVRRAVTAY 3
\ £ \ ) b H
3 <1 «
3
ORIGINALLY UNFRACTURED WITH INITIAL SAWCUT
" " 2 1 2 2 N 1 (] . L (0]
° 5 0 ° o | 2

Axial displacement (mm)
Axial displacement (mm)
Fig. 1 (left). Force-displacement curve for the axial direction in a cylindrical sample of Westerly granite. Small diagram above
the curve shows schematically how stress was applied to the sample. The sample fractured at point FR forming the fault which is
shown as a dotted line in the small diagram. The exact shape of the curves during a stress drop (such as ab) is not known and
is shown dotted. P is confining pressure. Fig. 2 (right). Same as Fig. 1 except that the sample contained a sawcut with
finely ground surfaces as shown schematically (small figure) by a heavy line.
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Brittle Friction Mechanics, Stick-slip

- Stick-slip (unstable) versus stable shear

Stick-slip dynamics

T = — ma’ +Ta! + f(z',2',t,0) = F,
X X ; . .
K F ma’ +Ta! + f(z!,2't,0) = K (v, — v)t
e ,,
mz’ + Fa' = K(v, — v)t
Slope = -K Static-Dynamic Friction
| . f=AuN
""""""""""" L E—
S Ha
2 s
(X, | sip Slip

Displacement

Johnson and Scholz, 1976




total slip, particle velocity, and
acceleration all depend on stress drop

Force

X> EXSIip

Displacement
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Stick-Slip Instability

Force

X> EXSIip ¢

Displacement

Slip Weakening Friction Law

s ]
N fa # pa(v)

Slip

Quasistatic Stability Criterion

K, — Inlts — fta)
L

K< K,; Unstable, stick-slip

K> K,; Stable sliding




Laboratory Studies

e But, there's a

problem.......

Slip Weakening Friction Law
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Shear Stress/Normal Stress
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Mair, Frye and Marone, JGR 2002

10

Repetitive Stick-Slip
Instability, like the seismic
cycle



Shear Stress/Normal Stress

o =5 MPa Spherical beads m349

0.50

Stick-slip stress-drop varies

with loading rate.

m437

; N ., ;
0.45] yy :
0.40F
0'35:_ — o = -}--1mln E
C * i
0.30F V=10 um/s V=100 um/s -
C | 1 | I | | | l 1 1 1 I 1 1 1 I 1 1 1 ]
9 9.2 9.4 9.6 9.8 10
Shear Displacement (mm)
2.6
Mair, Frye and Marone, JGR 2002
_ 24
é 2.2
a, 2.0
2
A 1.8
?
¥ 1.6
3
1.4
1.2

llllI

&7

1 llllllll | lllllllI | llllllll

0.1

1 10 100
Shearing Velocity (um/s)

1000



Rate (v) and State (0) Friction Constitutive Laws

state variable, characterizes
v v 9/\/ physical state of surfaceor
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Stick-Slip Instability Requires Some Form of Weakening:
Velocity Weakening, Slip Weakening, Thermal/hydraulic Weakening

vV Vo0
1 = Lo .
) w(0,V)=pu +aln(VO)+bln(Dc>

a0 _ Vo
dt - Dc Vo i Vi
! | , 17 Direct Effect
" awn (ﬁ)
\/\ b In (E) Evolution Effect
\/\ Vo
u Fadi
Stability Criterion poesp(= 5 ) of paststate |
o Jn(b—a)[l | mV,? |
‘ D, " onaD,

(b > a), K < K. Unstable, stick-slip [ K /Kc <1

(a > b), K> K. Stable sliding




Adhesive Theory of Fricton (Bowden and Tabor)

Rate (v) and State (0) Friction Constitutive Laws

|4 Vo0
1) p(0,V) =po+aln (7> —|—bln(Dc>

(o]

do Vo Vo iV,

= =1 =
2) dt D, s

Real contact area << nominal area

Contact junctions at inelastic (plastic) yield
strength

Contacts grow with “age”

Add: Rabinowicz’ s observations of
static/dynamic friction

“Static” friction is higher than “Dynamic”
friction because contdcts are older rzlarger)

-> implies that contact size decreases as
veloctiy increases

l Vi Direct Effect
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\f\ 174 Evolution Effect
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Rate (v) and State (0) Friction Constitutive Laws

V Vo0
1 _ o (0]
) u(O,V)—,uO—i—aln(VO)—I—bln(Dc>

Convention is to use a, b for frictionand A, B for Stress

7(0,v) =7, + Aln (g) + B lln (Il/;@)

Steady-state velocity strengthening if a-b > O,
AT velocity weakening if a-b <0

/\/\ velocity strengthening
u
___— velocity weakening

[
»

Log V



Rate (v) and State (0) Friction Constitutive Laws

V Vo0
1) — v 0
w6, V) ,uo—l—aln(vo>—|—bln(Dc)

2) 49 —1_ Ve Modeling experimental data
dt D,
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V,0
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a
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Measuring the velocity dependence of friction

Frictional Instability
Requires (a-b) < O
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Perturbations in normal force

Rate and State Friction Theory

() / \
u(6.v,0) = u0+alnLv1J Lv H)
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. \% Normal Stress
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Perturbations in normal force
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Perfettini et al., 2001
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Lab: Normal Stress Vibrations
Critical period observed

Boettcher & Marone,
JGR, 2004
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Boettcher & Marone, JGR, 2004
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Boettcher & Marone, JGR, 2004

Also, Phase lag.
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Empirical laws, based on laboratory friction data

Rate and State Friction

Dieterich, Scholz, Ruina, Rice

V=2 | V=1 um/s - Data
! ) — Ruina law
: Dieterich law
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Velocity weakening
frictional behavior in
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1.

The Mechanics of Slow Earthquakes and the
Spectrum of Fault Slip Behaviors

Friction laws: why do we need something as complex as
rate/state?

How do slow earthquakes work? What mechanism sets the
speed limit? Why are they slow?

. Speculations on how recent lab results may in apply in

nature. Scaling laws for a spectrum of slip modes from
slows earthquakes to super-shear rupture (SSE, LFE,
tremor, VLFE, ULFE, MLFE, BB-eq, elasto-dynamic EQS) .



Slow Earthquakes and The spectrum
of fault slip behaviors

Ordinary earthquakes, Subduction megathrust earthquakes,
Creep events, Tremor, Low frequency earthquakes, Very low

frequency earthquakes, Episodic tremor and slip (ETS), Long
term slow slip events, Slow Precursors, Geodetic transients

LETTER
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Strainmeters with high sensitivity over long periods have
enabled the detection and identification of slow earth-
quakes: seismic events which produce records similar to
those from normal earthquakes except that the time scale for
the rupture process is considerably longer. Slow earthquakes
provide a mechanism for stress redistribution before normal
earthquakes. Stress concentration may take place just hours
or days before an earthquake; if it did, this would affect
prediction capability.

all respects except for slower rupture velocities and longer rise
times. Here we describe slow earthquakes which occur
separately from normal earthquakes and which were observed
on the recently installed borehole strainmeters or on nearby
extensometers. Other kinds of data are also included which
indicate that the stress buildup before an earthquake may be
non-linear in time. In these cases the concentrations of stress
seem to occur in a much shorter time preceding the earthquake
than that calculated on the basis of magnitude—precursor-time
formulae®.

Strainmeter waveforms for
normal and slow earthquakes

Sacks et al., 1978

Beroza and Jordan, 1990

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 95, NO. B3, PAGES 2485-2510, MARCH 10, 1990

Searching for Slow and Silent Earthquakes Using Free Oscillations

GREGORY C. BEROZA AND THOMAS H. JORDAN

Department of Earth, Atmospheric and Planetary Sciences
Massachusetts Institute of Technology, Cambridge




1. Slow earthquakes could represent quasi-dynamic
frictional instability (positive feedback, self-driven
instability)

2. Recent lab work shows repetfitive stick-slip
instability for the complete spectrum of slip
behaviors - A new opportunity to investigate the
mechanics of slow slip

3. Mechanisms: Why are they slow?
* Rate dependence of the critical rheologic
stiffness Kc
* Complex behavior near the stability boundary
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High-resolution, direct measurements of shear displacement, shear strain,
normal strain, stresses
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Biaxial testing machine at Penn State
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To get slow slip we modify the
elastic loading stiffness and take
advantage of natural variations
in the frictional properties as a
function of shear
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Repetitive Slow Stick-Slip
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Stress drop decreases with event duration
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Creep events slip less than ordinary earthquakes
Emily E. Brodsky' and James Mori’
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Stability transition from stable to unstable sliding.
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elastic loading stiffness

J K/

Double direct shear with biaxial loading
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We have studied simple conditions
(room temp., quartz powder as fault gouge, etc.)

Thinking is that the results illuminate
a mechanism that may apply under
more general conditions.
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Stick-slip as a Mechanism for
Earthquakes,
Brace and Byerlee, Science 1966

ORIGINALLY UNFRACTURED

%

Axial displacement (mm)
Axial displacement (mm)
Fig. 1 (left). Force-displacement curve for the axial direction in a cylindrical sample of Westerly granite. Small diagram above
the curve shows schematically how stress was applied to the sample. The sample fractured at point FR forming the fault which is
shown as a dotted line in the small diagram. The exact shape of the curves during a stress drop (such as ab) is not known and
is shown dotted. P is confining pressure. Fig. 2 (right). Same as Fig. 1 except that the sample contained a sawcut with
finely ground surfaces as shown schematically (small figure) by a heavy line.

26 AUGUST 1966 991




Fault Slip Behavior
Stick-slip and stable sliding
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Fig.6. Effect of pressure and temperature on sliding stability for granite and gabbro (Brace and Byerlee,
1970 with some new data).




1. Slow earthquakes as a quasi-dynamic frictional instability

2. Mechanisms: Why are they slow?
* Rate dependence of the critical rheologic stiffness Kc
* Slow frictional stick-slip near the stability boundary

Fault zone energy release rate equals frictional weakening rate

Stress drop is quasidynamic because the dynamic force imbalance is
negligible




1.

The Mechanics of Slow Earthquakes and the
Spectrum of Fault Slip Behaviors
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. Speculations on how recent lab results may in apply in

nature. Scaling laws for a spectrum of slip modes from
slows earthquakes to super-shear rupture (SSE, LFE,
tremor, VLFE, ULFE, MLFE, BB-eq, elasto-dynamic EQS) .



Speculations on how recent lab results may in apply in
nature.

Where should slow earthquakes occur?

Slip is unstable if
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FAULT CREEP AT THE ALMADEN-CIENEGA WINERY, SAN BENITO COUNTY

Do~ TocHER AND ROBERT NAsoN

ESSA /Earthquake Mechanism Iabor;lory
San Francisco, California

In April 1956, Edwin G. Zacher of the Pacific Fire
Rating Bureau noticed fractures and displacements in the
Almaﬁen-Cienega Winery on Ciecnega Road about nine
miles south of Hollister, California (Steinbrugge and
Zacher, 1960). According to the geologic map of Talia-
ferro (1949), the winery is situated on the main trace of
the San Andreas fault. Investigation showed that the frac-
tures and displacements have resulted from gradual right-
lateral movement on a zone of fault creep (fig. 1).

The present winery building was constructed in 1948
to replace an older building on the same site. The new
building was constructed with concrete slab floors and
reinforced concrete walls. In 1954, many of the columns
near the line of creep had to be rebuilt. By 1956, the con-
crete walls and slabs had been offset 4 inches. Winery
employees were aware of the growth of the damage, but the
growth was slow and gave no alarm.

Since 1956, the right-lateral displacement has increased
by nearly 1% inch per year (Tocher, 1960). Recorders have
shown that most of the displacement occurs in “events” of
several days to a week’s duration (fig. 2). Most of the cr
events did not begin at the time of ?ocal earthquakes. Sud-
den fault movement did occur at the time of sharp local
carthquakes in 1960 and 1961. Three millimeters of sud-
den offset occurred during the magnitude 5.0 carthquake
of January 20, 1960, and 11 mm offset occurred in the

AAPG, 1967

“twin”’ earthquakes (magnitudes 53, and 514) of April
9, 1961. After the 1961 earthquake, the creep rate was
than usual for several years.

Features of particular interest at the winery site are:

1) The line of springs and wet ground along the San
Andreas fault north and south of the winery.

2) The damage to the main winery building, particu.

larly the displaced floor slabs.

3) The twisted cover on springs behind the tasting
room.

4) The fracture and right-lateral offset of the concrete
drainage channel (constructed about 1943) south
of the winery.

5) The right-lateral offset of the rows of vines south
of the winery.

Continuous slippage (creep) is now known to be occur-
ring along the San Andreas fault north and south of the
winery. The winery creep rate of about half an inch per
year compares with a rate of about one-quarter inch per
year just north of San Juan Baptista. Survey lines across
the San Andreas fault near San Benito and Bitterwater
(see roadlogs) have been offset at a rate of about one inch
per year, or twice the creep rate at the winery.

Gabilan Range & Adjacent San Andreas Fault Guidebook
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The Spectrum of Fault Slip Behaviors
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Speculations on how lab results may in apply in nature.
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Source Parameter and Scaling Relations
for Ordinary Earthquakes
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Source Parameter and Scaling Relations
for Ordinary Earthquakes
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Source Parameter and Scaling Relations
for Ordinary Earthquakes
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Source Parameter and Scaling Relations

for Ordinary Earthquakes
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Ordinary Earthquakes
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Nucleation Size for Regular Earthquakes
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Nucleation Size for Regular Earthquakes
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Rupture Patch Size for Slow Earthquakes?

N = 0.25

Slow earthquake nucleation when LN 1.0
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Do slow slip
events propagate
at fixed size?
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Slow slip events propagate at size r < h*
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Slow slip events propagate at size r < h*
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Summary

1. Slow earthquakes and fast, normal earthquakes are part
of the spectrum of fault slip behaviors (slip modes)

We produce lab slow earthquakes by matching loading
stiffness and frictional rheology

We observe the full spectrum of slip rates from fast to
slow, near the stability boundary

Stick-slip stress drop is lower for slower events and
decreases with slip event speed -the same as for slow vs.
regular earthquakes
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