The effect of fluid injection on an experimental fault and its role on frictional stability and earthquake triggering

Scuderi M.M.1, Collettini C.1,2 and C. Marone3

1 La Sapienza University of Rome
2 Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome
3 Pennsylvania State University, USA
Important to understand the interaction between fluids and faulting

Val D`Agri oil field, Italy
Wastewater-induced seismicity ($M_L > 2$)
Seismicity relates to main peaks in the well-head injection pressure and shows a migration on a pre-existing fault confined within the Apulian carbonates.

Improta et al., 2015 *GRL*

Oklahoma, USA
Wastewater-induced seismicity (many events $M_w > 5$)

Wastewater injection increased seismicity rate dramatically

Keranen et al., 2014 *Science*
Fault Reactivation vs. Frictional Slip Stability

The increase in fluid pressure along a fault will decrease the effective normal stress that clamps the fault in place favoring fault reactivation.

\[\tau = \mu (\sigma'_{n} - P_{f}) \]

Hubbert and Rubey, 1959 *Bull. Geol. Soc. Am*
Fault Reactivation vs. Frictional Slip Stability

Upon reactivation fault slip behavior can be described via the **Rate- and State- Frictional Properties:**

1. **potentially seismic** (Velocity Weakening)

2. **aseismic** (Velocity Strengthening)

Criterion for fault Stability

defined by the critical stiffness (k_c)

$$
k_c = \left(\sigma_n - P_f\right)(b-a) / D_c
$$

- $k < k_c$: **Unstable**
- $k \sim k_c$: **Conditionally Stable**
- $k > k_c$: **Stable**
Biaxial Apparatus
in a Double Direct Shear configuration
within a Pressure Vessel

Introduction

Methods

Results - RSF

Results - fault slip

Results - fault porosity

Discussion

Summary

Collettini et al., 2014 *IJRM*; Scuderi and Collettini, 2016 *Nature Scientific Report*
Double Direct Shear configuration within a pressure vessel

Introduction

Methods

Results - RSF

Results - fault slip

Results - fault porosity

Discussion

Summary

Sample assembly

Conduits for fluids

5.5 cm

Latex jacket

Porous Frits
Double Direct Shear configuration within a pressure vessel

- Shear stress
- Normal stress
- Down-stream \(P_{pd} \) Equilibration
- Up-stream \(P_{pu} \) Injection
- Gouge Layers
- Latex jacket
- Porous Frits
- Sample assembly
- Conduits for fluids

Sample assembly

Conduits for fluids

Latex jacket

Porous Frits

5.5 cm

5 cm
Experimental curve for a typical experiment

\begin{itemize}
 \item \textbf{Introduction}
 \item \textbf{Methods}
 \item \textbf{Results - RSF}
 \item \textbf{Results - fault slip}
 \item \textbf{Results - fault porosity}
 \item \textbf{Discussion}
 \item \textbf{Summary}
\end{itemize}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}

\textbf{Introduction}

\textbf{Methods}

\textbf{Results - RSF}

\textbf{Results - fault slip}

\textbf{Results - fault porosity}

\textbf{Discussion}

\textbf{Summary}
The friction rate parameter (a-b) decreases as the pore fluid pressure is increased from sub-hydrostatic to near lithostatic conditions.

Critical Slip Distance - Dc

The parameter Dc decreases as pore fluid pressure is increased from sub-hydrostatic to near lithostatic conditions.

Velocity dependence of friction (a-b)

The friction rate parameter (a-b) decreases as the pore fluid pressure is increased.
Creep experiments

Introduction

- Methods
- Results - RSF
- Results - fault slip
- Results - fault porosity
- Discussion
- Summary

Creep experiments

(1) Constant displacement rate of 10 μm/s to localize shear

(2) Fault relaxation to residual strength

(3) Set the shear stress at the desired value in load control to monitor fault slip

Shear Stress (τ), MPa

Time, minutes

Up-Stream fluid pressure, MPa

Constant Pf

Injection 1MPa/h

Injection 0.2MPa/12min

$\lambda = 0.4$

λ increases

Constant Shear stress

We monitor fault slip

Pc is constant

Pf is increased stepwise

Steady State Shear Strength (τ_{ss})

90% τ_{ss}

80% τ_{ss}

Failure

(1) (2) (3) Creep test

Scuderi et al., 2017 *EPSL*
Creep experiments

Three types of experiments to characterize fault slip behavior:

1) Constant Pf to monitor undisturbed fault creep
2) Injection of fluids at 1 MPa every hour
3) Injection of fluids at 0.2 MPa every 12 min
Creep Experiments - $90\% \tau_{ss}$

1) **Primary creep**
last for 35-40min in the experiment before injection begun

2) **Secondary creep**
aseismic creep at $v \sim 50\text{nm/s}$ corresponding to strain rates of $2 \times 10^{-4} \text{s}^{-1}$

3) **Tertiary creep**
begin when we meet the criterion for reactivation
the acceleration preceding dynamic failure least for $\sim 1\text{h}$

An increase in pore fluid pressure causes fault reactivation and failure with fault slip reaching slip velocities of 1 to 2 mm/s
Introduction

Methods

Results - RSF

Results - fault slip

Results - fault porosity

Discussion

Summary
Fault zone deformation characterized by:

1) During aseismic creep fault gouge compacts
2) Accelerated fault creep is associated with dilation
3) During co-seismic slip fault gouge undergoes compaction
Fault Reactivation vs. Frictional Slip Stability
The conundrum of fluid overpressure in earthquake triggering

Rate- and State- Friction analysis shows that at the same applied stress field and for similar values of pore fluid factor, λ, the fault has velocity strengthening behavior (i.e. aseismic behavior).

Creep tests show that over pressurized fluids cause accelerated creep leading to dynamic instability once the criterion for fault reactivation is met.
Energy balance for a representative unit volume of fault gouge

(Marone et al., 1990; Bos & Spiers, 2002)

\[\tau = \tau_x + \frac{d\varepsilon}{d\gamma} \left(\sigma_n - P_f \right) \]

For our experimental configuration:

\[\frac{d\varepsilon}{d\gamma} \quad \text{For our experimental configuration} \quad \frac{dh}{d\delta} \]

\[\tau = \tau_x + \frac{dh}{d\delta} \left(\sigma_n - P_f \right) \]

Shear Stress during creep experiments is imposed at constant values

represents the sum of all microscale dissipative processes per unit volume that include grain fracture, frictional sliding of grain contacts, pressure solution and crystal plasticity.

Effective Stress

Volumetric variations per unit of slip
Micro-mechanical model for fault zone deformation

Energy balance for unit volume of fault gouge
(Marone et al., 1990; Bos & Spiers, 2002)

\[\tau = \tau^* + \frac{dh}{d\delta} \left(\sigma_n - P_f \right) \]

Constant

Increases due to microscale dissipative processes such as pressure solution

To maintain the energy balance fault gouge compacts

\[\tau = \tau^* \]

Stage (1)

Stage (2)

Stage (3)

Stage (4)

Energy dissipation by dilation
slip velocity increase
Dynamic Slip Compaction

\[\Delta h \]

\[\sigma_n \]

\[\tau = \text{const.} \]

Introduction

Methods

Results - RSF

Results - fault slip

Results - fault porosity

Discussion

Summary
Micro-mechanical model for fault zone deformation

Energy balance for unit volume of fault gouge
(Marone et al., 1990; Bos & Spiers, 2002)

\[\tau = \tau_x + \frac{dh}{d\delta} \left(\sigma_n - P_f \right) \]

The effective stress decreases due to fault pressurization causing an energy imbalance.

The fault must dilate to dissipate the energy.

Energy dissipation by dilation
slip velocity increase

Dynamic Slip
Compaction

Constant

\(\Delta h \)

\(\sigma_n \)

\(\tau = \text{const.} \)

Stage (2)

Stage (3)

Stage (3)

Stage (4)
Micro-mechanical model for fault zone deformation

Energy balance for unit volume of fault gouge
(Marone et al., 1990; Bos & Spiers, 2002)

\[\tau = \tau_x + \frac{dh}{d\delta} \left(\sigma_n - P_f \right) \]

Fault dilation is no longer an efficient mechanism for energy dissipation, the fault system reacts with fracturing and shear localization resulting in dynamic slip propagation.
Pore fluid pressurization can promote accelerated fault slip in fault gouge that is characterized by velocity strengthening behavior (i.e. aseismic creep).

Fault slip behavior is well described by an energy balance that consider the interaction between fault zone deformation and surrounding stress field.

The duality between the rate strengthening behavior and the observed nucleation of dynamic instability can be interpreted by considering the different dynamics of micro mechanical processes and stress state evolution between creep experiments and constant displacement rate experiment used to retrieve RSF parameters.
Summary:

Pore fluid pressurization can promote accelerated fault slip in fault gouge that is characterized by velocity strengthening behavior (i.e. aseismic creep).

Fault slip behavior is well described by an energy balance that consider the interaction between fault zone deformation and surrounding stress field.

The duality between the rate strengthening behavior and the observed nucleation of dynamic instability can be interpreted by considering the different dynamics of micro mechanical processes and stress state evolution between creep experiments and constant displacement rate experiment used to retrieve RSF parameters.
Pore fluid pressurization can promote accelerated fault slip in fault gouge that is characterized by velocity strengthening behavior (i.e. aseismic creep).

Fault slip behavior is well described by an energy balance that considers the interaction between the fault zone deformation and the surrounding stress field.

The nucleation of dynamic instability on a rate strengthening fault can be due to the different dynamics of micro mechanical processes and stress state evolution between creep experiments and constant displacement rate experiment that are used to retrieve RSF parameters.

Thank you

Mail: marco.scuderi@uniroma1.it