Mixed-mode slip behavior of the Altotiberina LANF System (Italy)

Through high-resolution earthquake locations and Repeating Events

Luisa Valoroso¹, Lauro Chiaraluce¹, Raffaele Di Stefano¹, and The AltotiBerina near Fault ObservatOry (TABOO) working group.

1: Istituto Nazionale di Geofisica e Vulcanologia, Centro Nazionale Terremoti

LANF enigma

$$R = \frac{\sigma_1 - P_f}{\sigma_3 - P_f} = \frac{1 + \mu_s \cot \theta_r}{1 - \mu_s \tan \theta_r}$$

Classical Anderson-Byerlee frictional fault mechanics (one principal stress is vertical and faults with 0.6<µs<0.85) **predicts no slip** on LANF (dip < 30°).

This is consistent with the observed dip-range of moderate and large dip-slip earthquakes (M>5.5) identified using positively discriminated focal mechanisms.

LANF enigma

- ✓ Can eqks nucleate on LANF (dip<30°)?
- ✓ How do LANF accommodate extension of continental crust (i.e., seismic vs aseismic slip-behaviour)?
- ✓ What about their seismic hazard?

Northern Apennines

Northern Apennines

Zuccale Fault

Both velocity strengthening & velocity weakening materials in the LANF fault core of the exhumed analogue of the ATF

Smith et al., 2007 JSG; Collettini et al., 2011 EPSL

Northern Apennines

Chiaraluce et al., 2007

Available geophysical data

Borehole data, rock samples and 300 km of seismic reflection profiles are available to identify fault rock types, fault geometry and fluid pressure condition, at depth.

The Alto tiBerina near fault ObservatOry (TABOO)

- Observation systems:
- > Seismic network:
- 24-SP, 18-BB, 12-SM.
- > HRcGPS network: 18.
- Geochemical stations: 4 (Radon).
- > Electromagnetic stations:
- 1 (ELF and VLF).
- > 5 shallow boreholes (~250 m) instrumented with SP arrays.
- > 6 corner reflectors.
- Future developments:
- Installation of 6 strain meters in shallow boreholes.
- Potential site for ICDP deep drilling.

http://taboo.rm.ingv.it/

Chiaraluce et al., 2014

2010-2014 Earthquake catalogue

- High-resolution double-difference catalogue (Waldhauser and Ellsworth, 2000)
- 37,000 events
 M_w max= 3.9
- $15 \text{ M}_{\text{W}} > 3$
- $M_C=0.5 M_L$

Hanging-wall vs On-Fault seismicity

Space-Time Evolution

Hanging-wall vs On-Fault seismicity

Hanging-wall vs On-Fault seismicity

2010-2014 Earthquake catalogue: Seismicity @ detph

5 km-spaced cross-sections

Low-angle ATF: Fault Zone Structure

Low-angle ATF: Fault Zone Structure

Low-angle ATF: Fault Zone Structure

Low-angle ATF: Multiple slipping planes

Low-angle ATF: Multiple slipping planes

Coherent low-angle focal mechanisms solutions

Low-angle ATF: Multiple slipping planes

Hanging-wall: Space-time diagram

Pietralunga Seismic Sequence

Pietralunga Seismic Sequence

Slip behaviour along the low-angle ATF?

Clusters of Similar (Repeating?) Events along the ATF

- √ 97 clusters including 300 events
- √ 90% of coherency at 5 stations
- √ 8% of the total ATF-seismicity

- √ 60% of the clusters are doublets
- ✓ Similar magnitude
- √ Short inter-event-time (1 day)

Spatial variation of frictional behaviour along the ATF

Geodetic Interseismic Coupling Map from Anderlini et al., (2016, GRL)

Spatial variation of frictional behaviour along the ATF

Geodetic Interseismic Coupling Map from Anderlini et al., (2016, GRL)

Spatial variation of frictional behaviour along the ATF

Geodetic Interseismic Coupling Map from Anderlini et al., (2016, GRL)

How is the strain partitioned within the fault system?

The rate of occurrence of RE seems to be synchronous with the ATF-HW seismic release → creeping guiding the strain partitioning?

How is the strain partitioned within the fault system?

The rate of occurrence of RE seems to be synchronous with the ATF-HW seismic release → creeping guiding the strain partitioning?

In Summary...

- Kinematically consistent micro-seismicity does occur along the active
 LANF within a crustal volume with vertical σ₁ and high-fpf (CO₂)
- High-angle HW faults are activated by multiple M3+ seismic sequences, showing migrating from one fault segment to another.
- The low-angle ATF shows a mixed-mode (stick-slip & stable-sliding) slip-behavior.
- Aseismic slip is suggested by:
 - seismic Mo about 30% of the geodetic Mo
 - clusters of RE occur within creeping portions around asperities.
- RE seismic rate seems synchronous with the ATF-HW seismic release, thus suggesting that the creeping may guide the strain partitioning along the ATF-HW faults.

Thank you!