Imbricated slip rate processes during slow slip transients imaged by lowfrequency earthquake

O. Lengliné¹, W. B. Frank², D. Marsan³ and J.-P. Ampuero⁴

¹ EOST, Université de Strasbourg/CNRS, France
² EAPS, MIT, USA
³ Isterre, Université de Savoie/CNRS, France
⁴ Seismolab, Caltech, USA

Correlation between tremor activity and large (geodetically recorded) slow slip events

Cascadia

Rogers and Dragert, 2003

What does these tremors represent ?

Mexico

Costa-Rica

Schwartz et al. 2010

Frank et al. 2013

If we assume that LFE rate is a proxy for slip-rate on the interface

Characterize the slip rate from LFE activity

Potentially detecting smaller slip rate transients not captured by surface geodetic instruments.

Region	Total LFE	# families
Mexico	1,849,487	1120
N. Cascadia	269,586	130
Parkfield	428,268	88

SE

-60

∆t

The LFE time-clustering

An example from one family in Mexico

$$\lambda(t) = \mu + \sum_{i|t_i < t}^{Ne} a_i g(t - t_i),$$

Sum of processes of various amplitudes a_i but with the same temporal evolution

Short time scale - g(t)

LFE rate is governed by a fast (power-law) decaying process

Very similar for all families

Distribution of a

No correlation between LFE amplitude and number of associated events

W₀

Burst amplitudes (evaluated from the number of LFE) are well fitted by an exponential or power-law distribution

There exist burst of LFE with various amplitudes

A two time-scales dynamics

Most LFE are generated during fast decaying episodes

These episodes are clustered in time and modulated by longer time scale processes (burst)

These burst show a time decay of $t^{-1/4} \rightarrow It$ suggest the slow slip front propagates $d(t) \sim t^{1/2}$

Burst of all amplitudes exist

If indeed LFE rate is a proxy for slip rate suggest that slip rate is indeed composed of a sum of discrete short term episodes

Is the model valid ?

Volume 14, Issue 12, pages 5371-5392, 26 DEC 2013 DOI: 10.1002/2013GC005031 http://onlinelibrary.wiley.com/doi/10.1002/2013GC005031/full#ggge20305-fig-0009 A log-normal recurrence time distribution

Locally the slip rate decays as $t^{-1/4}$

R&S friction models suggest that slip rate, v, behind the SSE front decays as a function of the distance from the front, d, as v(d) $\sim d^{-0.5}$

Implies that $d(t) \sim t^{1/2}$. It suggests that the SSE front propagates with a decaying speed.

